These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7225519)

  • 21. [Free energy linearity principle in enzymatic catalysis and thermodynamic principles of specificity].
    Kozlov LV
    Biokhimiia; 1981 Aug; 46(8):1369-75. PubMed ID: 7272358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A theoretical model for calculation of the rate constant of enzyme-substrate complex formation. 3. Effect of intermolecular forces and diffusion motion of the enzyme molecule on the rate constant.
    Somogyi B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):185-96. PubMed ID: 4419764
    [No Abstract]   [Full Text] [Related]  

  • 23. Enzymes work by solvation substitution rather than by desolvation.
    Warshel A; Aqvist J; Creighton S
    Proc Natl Acad Sci U S A; 1989 Aug; 86(15):5820-4. PubMed ID: 2762299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperativity in two-substrate reactions.
    Gol'dshtein BN; Vol'kenshtein MV
    Mol Biol; 1972 Jan; 5(4):441-9. PubMed ID: 4670414
    [No Abstract]   [Full Text] [Related]  

  • 25. Graphical rules for enzyme-catalysed rate laws.
    Chou KC; Forsén S
    Biochem J; 1980 Jun; 187(3):829-35. PubMed ID: 7188428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of competitive inhibitors to study substrate binding order.
    Fromm HJ
    Methods Enzymol; 1979; 63():467-86. PubMed ID: 502866
    [No Abstract]   [Full Text] [Related]  

  • 27. Single-occupancy binding in simple bounded and unbounded systems.
    Schumaker MF
    Bull Math Biol; 2007 Aug; 69(6):1979-2003. PubMed ID: 17443389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of metabolic systems with complex slow and fast dynamics.
    Dvorák I; Siska J
    Bull Math Biol; 1989; 51(2):255-74. PubMed ID: 2647171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Current problems in the theory of regulation of enzymes and enzyme systems].
    Varfolomeev SD
    Antibiot Med Biotekhnol; 1987 May; 32(5):323-30. PubMed ID: 3300521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate.
    ter Kuile BH; Cook M
    Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction systems. I. Neutral substrates.
    Li TT; Chou KC
    Sci Sin; 1976; 19(1):117-36. PubMed ID: 1273571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The theoretical analysis of kinetic behaviour of "hysteretic" allosteric enzymes. II. The dissociating and associating enzymic systems in which the rate of installation of equilibrium between the oligomeric forms is small in comparison with that of enzymatic reaction.
    Kurganov BI; Dorozhko AI; Kagan ZS; Yakovlev VA
    J Theor Biol; 1976 Aug; 60(2):271-86. PubMed ID: 957716
    [No Abstract]   [Full Text] [Related]  

  • 33. Theoretical and experimental analysis of continous flow enzyme reactor kinetics. II. Diffusion controlled systems. Sphere-like enzyme carrying particles.
    Lasch J
    Mol Cell Biochem; 1973 Nov; 2(1):79-86. PubMed ID: 4764471
    [No Abstract]   [Full Text] [Related]  

  • 34. Cooperativity in enzyme function: equilibrium and kinetic aspects.
    Neet KE
    Methods Enzymol; 1980; 64():139-92. PubMed ID: 7374452
    [No Abstract]   [Full Text] [Related]  

  • 35. Mathematical analysis of metabolic networks.
    Reich JG; Sel'kov EE
    FEBS Lett; 1974 Mar; 40(0):suppl:S119-27. PubMed ID: 4853108
    [No Abstract]   [Full Text] [Related]  

  • 36. [Recurrent relationship for the characteristic polynom of a system of enzymatic catalysis of nonbranched monomolecular reactions].
    Omel'ianchuk LV; Kolchanov NA
    Biofizika; 1982; 27(3):404-9. PubMed ID: 7093320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Regulatory reversible enzymic reactions. Theoretical analysis].
    Popova SV; Sel'kov EE
    Mol Biol (Mosk); 1978; 12(5):1139-51. PubMed ID: 739998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subunit interactions in enzyme catalysis. Kinetic models for one-substrate polymeric enzymes.
    Ricard J; Mouttet C; Nari J
    Eur J Biochem; 1974 Feb; 41(3):479-97. PubMed ID: 4817559
    [No Abstract]   [Full Text] [Related]  

  • 39. The theoretical analysis of kinetic behaviour of kinetic behaviour of "hysteretic" allosteric enzymes. III. Dissociating and associating enzyme systems in which the rate of installation of equilibrium between the oligomeric forms in comparable to that of enzymatic reaction.
    Kurganov BI; Dorozhko AK; Kagan ZS; Yakovlev VA
    J Theor Biol; 1976 Aug; 60(2):287-99. PubMed ID: 957717
    [No Abstract]   [Full Text] [Related]  

  • 40. Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions.
    Van der Meer R; Westeroff HV; Van Dam K
    Biochim Biophys Acta; 1980 Jul; 591(2):488-93. PubMed ID: 7397133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.