These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7225519)

  • 41. New linear plots for the separate estimation of Michaelis-Menten parameters.
    Fajszi C; Endrenyi L
    FEBS Lett; 1974 Aug; 44(2):240-6. PubMed ID: 4421833
    [No Abstract]   [Full Text] [Related]  

  • 42. [Kinetic behavior of slowly equilibrating association-dissociation enzyme systems].
    Kurganov BI; Dorozhko AI; Kagan ZS; Iakovlev VA
    Mol Biol (Mosk); 1975; 9(4):533-42. PubMed ID: 1214796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mathematical analysis of enzymic reaction systems using optimization principles.
    Heinrich R; Schuster S; Holzhütter HG
    Eur J Biochem; 1991 Oct; 201(1):1-21. PubMed ID: 1915354
    [No Abstract]   [Full Text] [Related]  

  • 44. Kinetic analysis of the generalized Monod-Wyman-Changeux model.
    Kurganov BI
    Mol Biol; 1974 Sep; 8(2):193-9. PubMed ID: 4431416
    [No Abstract]   [Full Text] [Related]  

  • 45. [Simple kinetic models explaining critical phenomena in enzymatic reactions with isomerization of the enzyme and substrate].
    Gol'dshteĭn BN; Ivanova AN
    Mol Biol (Mosk); 1988; 22(5):1381-92. PubMed ID: 3221858
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The behaviour of coupled enzyme systems in the transient and steady-state regions of the reaction.
    Kuchel PW; Roberts DV
    Biochim Biophys Acta; 1974 Oct; 364(2):181-92. PubMed ID: 4418119
    [No Abstract]   [Full Text] [Related]  

  • 47. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities.
    Ninio J
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):663-7. PubMed ID: 3468503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active enzyme gel chromatography: II. Computer simulations.
    Brown BB; Zimmerman JK
    Biophys Chem; 1976 Sep; 5(3):351-7. PubMed ID: 974227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the rate of diffusion-controlled reactions of enzymes. Spatial factor and force field factor.
    Kuo-chen C; Shou-ping J
    Sci Sin; 1974 Oct; 27(5):664-80. PubMed ID: 4219062
    [No Abstract]   [Full Text] [Related]  

  • 51. Reciprocity or near-reciprocity of highly coupled enzymatic processes at the multidimensional inflection point.
    Caplan SR
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4314-8. PubMed ID: 6270670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simplifying principles for chemical and enzyme reaction kinetics.
    Klonowski W
    Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The flexibility during the juxtaposition of reacting groups and the upper limits of enzyme reactions.
    Zhou GP; Li TT; Chou KC
    Biophys Chem; 1981 Nov; 14(3):277-81. PubMed ID: 7326350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intermolecular ligand substitution reactions.
    Jenkins WT
    Prog Clin Biol Res; 1984; 144B():89-96. PubMed ID: 6718418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymic mechanisms involving concomitant transfer and hydrolysis reactions.
    Frère JM
    Biochem J; 1973 Nov; 135(3):469-81. PubMed ID: 4772273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production-passage-time approximation: a new approximation method to accelerate the simulation process of enzymatic reactions.
    Kuwahara H; Myers CJ
    J Comput Biol; 2008 Sep; 15(7):779-92. PubMed ID: 18662102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic behavior of associating enzyme systems ofthe type M in equilibrium M2 in equilibrium M3 in equilibrium ... and of the type 2M in equilibrium D in equilibrium D2 in equilibrium D3 in equilibrium ..
    Kurganov BI
    Mol Biol; 1975 Jan; 8(4):419-26. PubMed ID: 124013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microscopic diffusion-reaction coupling in steady-state enzyme kinetics.
    Berg OG; Ehrenberg M
    Biophys Chem; 1983 Jan; 17(1):13-28. PubMed ID: 6824760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.
    Palsson BO; Jamier R; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):303-21. PubMed ID: 6513573
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics.
    Vincent JC; Thellier M
    Biophys J; 1983 Jan; 41(1):23-8. PubMed ID: 6824750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.