These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7225642)

  • 1. A hydrodynamical study of the flow in renal tubules.
    Radhakrishnamacharya G; Chandra P; Kaimal MR
    Bull Math Biol; 1981; 43(2):151-63. PubMed ID: 7225642
    [No Abstract]   [Full Text] [Related]  

  • 2. [On the flow resistance within the loop of Henle of the rat kidney following changes in the extracellular volume].
    Brandis M
    Pflugers Arch; 1969; 307(2):R59. PubMed ID: 5814872
    [No Abstract]   [Full Text] [Related]  

  • 3. Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. II. Reabsorptive characteristics during constriction of the renal artery.
    Wahl M; Liebau G; Fischbach H; Schnermann J
    Pflugers Arch; 1968; 304(4):297-314. PubMed ID: 5751029
    [No Abstract]   [Full Text] [Related]  

  • 4. [Glucose reabsorption in the rat kidney. Micropuncture analysis of tubular glucose concentration during free flow].
    Rohde R; Deetjen P
    Pflugers Arch; 1968; 302(3):219-32. PubMed ID: 5748556
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of luminal diameter and flow velocity on the isotonic fluid absorption and 36Cl permeability of the proximal convolution of the rat kidney.
    Radtke HW; Rumrich G; Klöss S; Ullrich KJ
    Pflugers Arch; 1971; 324(4):288-96. PubMed ID: 5103162
    [No Abstract]   [Full Text] [Related]  

  • 6. A direct evaluation of the Gertz hypothesis on single rat proximal tubules in vivo: failure of the tubular volume to be the sole determinant of the reabsorptive rate.
    Schnermann J; Levine DZ; Horster M
    Pflugers Arch; 1969; 308(2):149-65. PubMed ID: 5814034
    [No Abstract]   [Full Text] [Related]  

  • 7. Continuous measurement of flow rate and volume in the nanoliter range.
    Jensen PK
    Acta Physiol Scand; 1979 May; 106(1):5-9. PubMed ID: 463578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo perfusion of proximal tubules of the rat: glomerulotubular balance.
    Morgan T; Berliner RW
    Am J Physiol; 1969 Oct; 217(4):992-7. PubMed ID: 4309978
    [No Abstract]   [Full Text] [Related]  

  • 9. A dynamic numerical method for models of renal tubules.
    Layton HE; Pitman EB
    Bull Math Biol; 1994 May; 56(3):547-65. PubMed ID: 8087081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of arterial blood pressure changes on proximal tubular reabsorption in nondiuretic rats.
    Heller J
    Pflugers Arch; 1969; 307(2):R62. PubMed ID: 5814877
    [No Abstract]   [Full Text] [Related]  

  • 11. Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney.
    Horster M; Thurau K
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 301(2):162-81. PubMed ID: 5243255
    [No Abstract]   [Full Text] [Related]  

  • 12. Stationary perfusion methods.
    Gertz KH
    Yale J Biol Med; 1972; 45(3-4):265-8. PubMed ID: 4638648
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption.
    Spitzer A; Windhager EE
    Am J Physiol; 1970 Apr; 218(4):1188-93. PubMed ID: 5435419
    [No Abstract]   [Full Text] [Related]  

  • 14. Transcapillary fluid exchange in the renal cortex.
    Deen WM; Robertson CR; Brenner BM
    Circ Res; 1973 Jul; 33(1):1-8. PubMed ID: 4587824
    [No Abstract]   [Full Text] [Related]  

  • 15. Examination of the Gertz technique as applied to the proximal tubule of the rat kidney.
    Weinman EJ; Hardy RJ; Kashgarian M; Hayslett JP
    Yale J Biol Med; 1972; 45(3-4):289-98. PubMed ID: 4638651
    [No Abstract]   [Full Text] [Related]  

  • 16. Micropuncture studies on the dog kidney. II. Reabsorptive characteristics of the proximal tubule during spontaneous and experimental variations in GFR and during drug induced natriuresis.
    Levine DZ; Liebau G; Fischbach H; Thurau K
    Pflugers Arch; 1968; 304(4):365-75. PubMed ID: 5751034
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of electrolytes on glucose absorption in Necturus kidney proximal tubules.
    Khuri RN; Flanigan WJ; Oken DE; Solomon AK
    Fed Proc; 1966; 25(3):899-902. PubMed ID: 5941015
    [No Abstract]   [Full Text] [Related]  

  • 18. Flow of a newtonian fluid through a permeable tube: the application to the proximal renal tubule.
    Marshall EA; Trowbridge EA
    Bull Math Biol; 1974; 36(5-6):457-76. PubMed ID: 4457194
    [No Abstract]   [Full Text] [Related]  

  • 19. Sources of error in and limitations in the use of t-one-half as a measure of tubular reabsorptive capacity.
    Györy AZ
    Yale J Biol Med; 1972; 45(3-4):269-74. PubMed ID: 4638649
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional heterogeneity of nephrons. I. Intraluminal flow velocities.
    Baines AD; Baines CJ; de Rouffignac C
    Pflugers Arch; 1969; 308(3):244-59. PubMed ID: 5813953
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.