These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7227125)
1. New findings on acrylonitrile metabolism. Kopecký J; Zachardová D; Gut I Czech Med; 1980; 3(4):295-301. PubMed ID: 7227125 [TBL] [Abstract][Full Text] [Related]
2. Identification of the major urinary metabolites of acrylonitrile in the rat. Langvardt PW; Putzig CL; Braun WH; Young JD J Toxicol Environ Health; 1980 Mar; 6(2):273-82. PubMed ID: 7392095 [TBL] [Abstract][Full Text] [Related]
3. Acrylonitrile-14C metabolism in rats: effect of the route of administration on the elimination of thiocyanate and other radioactive metabolites in urine and feces. Gut I; Kopecký J; Filip J J Hyg Epidemiol Microbiol Immunol; 1981; 25(1):12-6. PubMed ID: 7229351 [TBL] [Abstract][Full Text] [Related]
4. Two routes of acrylonitrile metabolism. Kopecký J; Gut I; Nerudová J; Zachardová D; Holecek V J Hyg Epidemiol Microbiol Immunol; 1980; 24(3):356-62. PubMed ID: 7440970 [TBL] [Abstract][Full Text] [Related]
5. Determination of specific urinary thioethers derived from acrylonitrile and ethylene oxide. Gérin M; Tardif R; Brodeur J IARC Sci Publ; 1988; (89):275-8. PubMed ID: 3198210 [TBL] [Abstract][Full Text] [Related]
6. Formation of mercapturic acids from acrylonitrile, crotononitrile, and cinnamonitrile by direct conjugation and via an intermediate oxidation process. van Bladeren PJ; Delbressine LP; Hoogeterp JJ; Beaumont AH; Breimer DD; Seutter-Berlage F; van der Gen A Drug Metab Dispos; 1981; 9(3):246-9. PubMed ID: 6113934 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of [14C]- and [35S]S-(1,2-dichlorovinyl)-L-cysteine in the male Fischer 344 rat. Finkelstein MB; Patel NJ; Anders MW Drug Metab Dispos; 1995 Jan; 23(1):124-8. PubMed ID: 7720515 [TBL] [Abstract][Full Text] [Related]
8. Urinary excretion of acrylonitrile and its metabolites in rats. Müller G; Verkoyen C; Soton N; Norpoth K Arch Toxicol; 1987 Aug; 60(6):464-6. PubMed ID: 3662822 [TBL] [Abstract][Full Text] [Related]
9. Acrylonitrile metabolism in the rat. Kopecký J; Gut I; Nerudová J; Zachardová D; Holeĉek V; Filip J Arch Toxicol Suppl; 1980; 4():322-4. PubMed ID: 6933927 [TBL] [Abstract][Full Text] [Related]
10. Urinary excretion of mercapturic acids and thiocyanate in rats exposed to acrylonitrile: influence of dose and route of administration. Tardif R; Talbot D; Gérin M; Brodeur J Toxicol Lett; 1987 Dec; 39(2-3):255-61. PubMed ID: 3686555 [TBL] [Abstract][Full Text] [Related]
11. Acrylonitrile biotransformation in rats, mice, and chinese hamsters as influenced by the route of administration and by phenobarbital, SKF 525-A, cysteine, dimercaprol, or thiosulfate. Gut I; Nerudová J; Kopecký J; Holecek V Arch Toxicol; 1975 Feb; 33(2):151-61. PubMed ID: 1242300 [TBL] [Abstract][Full Text] [Related]
12. Acrylonitrile inhalation in rats: II. Excretion of thioethers and thiocyanate in urine. Gut I; Nerudová J; Stiborová A; Kopecký J; Frantík E J Hyg Epidemiol Microbiol Immunol; 1985; 29(1):9-13. PubMed ID: 3989293 [TBL] [Abstract][Full Text] [Related]
13. [Toxicity and metabolism of acrylonitrile]. Sapota A; Chmielnicka J Med Pr; 1981; 32(1):25-33. PubMed ID: 7026966 [TBL] [Abstract][Full Text] [Related]
14. Dose-dependent urinary excretion of acrylonitrile metabolites by rats and mice. Kedderis GL; Sumner SC; Held SD; Batra R; Turner MJ; Roberts AE; Fennell TR Toxicol Appl Pharmacol; 1993 Jun; 120(2):288-97. PubMed ID: 8511799 [TBL] [Abstract][Full Text] [Related]
15. Urinary metabolite profile of phenyl and o-cresyl glycidyl ether in rats: identification of a novel pathway leading to N-acetylserine O-conjugates. de Rooij BM; Commandeur JN; Hommes JW; Aalbers T; Groot EJ; Vermeulen NP Chem Res Toxicol; 1998 Feb; 11(2):111-8. PubMed ID: 9511902 [TBL] [Abstract][Full Text] [Related]
16. Characterization of urinary metabolites from Sprague-Dawley rats and B6C3F1 mice exposed to [1,2,3,4-13C]butadiene. Nauhaus SK; Fennell TR; Asgharian B; Bond JA; Sumner SC Chem Res Toxicol; 1996 Jun; 9(4):764-73. PubMed ID: 8831821 [TBL] [Abstract][Full Text] [Related]
17. Absorption, disposition kinetics, and metabolic pathways of cyclohexene oxide in the male Fischer 344 rat and female B6C3F1 mouse. Sauer JM; Bao J; Smith RL; McClure TD; Mayersohn M; Pillai U; Cunningham ML; Sipes IG Drug Metab Dispos; 1997 Mar; 25(3):371-8. PubMed ID: 9172957 [TBL] [Abstract][Full Text] [Related]
18. Influence of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid, on the urinary elimination of mercapturic acids of ethylene oxide, dibromoethane, and acrylonitrile: a dose-effect study. Goyal R; Tardif R; Brodeur J Can J Physiol Pharmacol; 1989 Mar; 67(3):207-12. PubMed ID: 2663124 [TBL] [Abstract][Full Text] [Related]
19. Comparative metabolism of 1,2,4-trichlorobenzene in the rat and rhesus monkey. Lingg RD; Kaylor WH; Pyle SM; Kopfler FC; Smith CC; Wolfe GF; Cragg S Drug Metab Dispos; 1982; 10(2):134-41. PubMed ID: 6124398 [TBL] [Abstract][Full Text] [Related]
20. Urinary metabolites of [1,2,3-13C]acrylonitrile in rats and mice detected by 13C nuclear magnetic resonance spectroscopy. Fennell TR; Kedderis GL; Sumner SC Chem Res Toxicol; 1991; 4(6):678-87. PubMed ID: 1807451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]