These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 7228492)
1. H N.M.R. study of the conformation of [Glu4] oxytocin and its lanthanide complexes in aqueous solution. Walter R; Smith CW; Sarathy KP; Pillai RP; Krishna NR; Lenkinski RE; Glickson JD; Hruby VJ Int J Pept Protein Res; 1981 Jan; 17(1):56-64. PubMed ID: 7228492 [TBL] [Abstract][Full Text] [Related]
2. Amide hydrogen exchange rates of peptides in H2O solution by 1H nuclear magnetic resonance transfer of solvent saturation method. Conformations of oxytocin and lysine vasopressin in aqueous solution. Krishna NR; Huang DH; Glickson JD; Rowan R; Walter R Biophys J; 1979 Jun; 26(3):345-66. PubMed ID: 262422 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen--deuterium exchange kinetics of the amide protons of oxytocin studied by nuclear magnetic resonance. Krauss EM; Cowburn D Biochemistry; 1981 Feb; 20(4):671-9. PubMed ID: 6260137 [TBL] [Abstract][Full Text] [Related]
4. Ca2+ binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using 1H NMR. Linse S; Teleman O; Drakenberg T Biochemistry; 1990 Jun; 29(25):5925-34. PubMed ID: 2166565 [TBL] [Abstract][Full Text] [Related]
5. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons. Live DH; Cowburn D; Breslow E Biochemistry; 1987 Oct; 26(20):6415-22. PubMed ID: 3427016 [TBL] [Abstract][Full Text] [Related]
6. Conformational study of the potent peptide hormone antagonist [1-penicillamine,2-leucine]oxytocin in aqueous solution. Mosberg HI; Hruby VJ; Meraldi JP Biochemistry; 1981 May; 20(10):2822-8. PubMed ID: 7248250 [TBL] [Abstract][Full Text] [Related]
8. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1976 Oct; 15(21):4600-8. PubMed ID: 9977 [TBL] [Abstract][Full Text] [Related]
9. Interaction of oxytocin with Ca2+: II. Proton magnetic resonance and molecular modeling studies of conformations of the hormone and its Ca2+ complex. Ananthanarayanan VS; Belciug MP; Zhorov BS Biopolymers; 1996; 40(5):445-64. PubMed ID: 9062068 [TBL] [Abstract][Full Text] [Related]
10. Proton magnetic resonance study of peptide conformation: effect of trifluoroethanol on oxytocin and 8-lysine-vasopressin. Walter R; Glickson JD Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1199-203. PubMed ID: 4515618 [TBL] [Abstract][Full Text] [Related]
11. 300-MHz nuclear magnetic resonance study of oxytocin aqueous solution: conformational implications. Brewster AI; Hruby VJ Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3806-9. PubMed ID: 4521206 [TBL] [Abstract][Full Text] [Related]
12. Proton magnetic resonance study of conformational dynamics, coordianted internal motions, and chemical shifts of tocinamide. Nicholls LJ; Jones CR; Gibbons WA Biochemistry; 1977 May; 16(10):2248-54. PubMed ID: 861208 [TBL] [Abstract][Full Text] [Related]
13. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. Bertini I; Janik MB; Lee YM; Luchinat C; Rosato A J Am Chem Soc; 2001 May; 123(18):4181-8. PubMed ID: 11457182 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation. Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454 [TBL] [Abstract][Full Text] [Related]
15. Solution conformation of thymopoietin32-36: a proton nuclear magnetic resonance study. Krishna NR; Huang DH; Chen DM; Goldstein G Biochemistry; 1980 Nov; 19(24):5557-63. PubMed ID: 7459332 [TBL] [Abstract][Full Text] [Related]
16. Nuclear-magnetic-resonance study of the conformation of a dinucleotide in solution using the lanthanide probe method. Geraldes CF; Williams RJ Eur J Biochem; 1979 Jun; 97(1):93-101. PubMed ID: 113214 [TBL] [Abstract][Full Text] [Related]
17. Biofunctional evaluation of a hydrogen bond stabilizing the conformation in the cyclic part of oxytocin. Roy J; Gazis D; Shakman R; Schwartz L Int J Pept Protein Res; 1982 Jul; 20(1):35-42. PubMed ID: 7118427 [TBL] [Abstract][Full Text] [Related]
18. Conformational studies of some 2':3'-cyclic mononucleotides in solution by different nuclear-magnetic-resonance methods. Geraldes CF; Williams RJ Eur J Biochem; 1978 Apr; 85(2):471-8. PubMed ID: 648531 [TBL] [Abstract][Full Text] [Related]
19. Examination of structural characteristics of the potent oxytocin antagonists [dPen1,Pen6]-OT and [dPen1,Pen6, 5-tBuPro7]-OT by NMR, Raman, CD spectroscopy and molecular modeling. Bélec L; Blankenship JW; Lubell WD J Pept Sci; 2005 Jul; 11(7):365-78. PubMed ID: 15641022 [TBL] [Abstract][Full Text] [Related]
20. Structure of the dysprosium-glycocholate complex in submicellar aqueous solution: paramagnetic mapping by proton nuclear magnetic resonance spectroscopy. An approximation for the intrinsic "bound" relaxation rates in the case of nondilute paramagnetic systems. Mukidjam E; Elgavish GA; Barnes S Biochemistry; 1987 Oct; 26(21):6785-92. PubMed ID: 3427043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]