These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7228819)

  • 21. Effect of methyl parathion on nitrous oxide production: a laboratory study.
    Rojas-Oropeza M; Fernández FJ; Dendooven L; Cabirol N
    J Environ Manage; 2012 Mar; 95 Suppl():S25-30. PubMed ID: 21295905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides.
    Ortiz-Hernández ML; Quintero-Ramírez R; Nava-Ocampo AA; Bello-Ramírez AM
    Fundam Clin Pharmacol; 2003 Dec; 17(6):717-23. PubMed ID: 15015717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site.
    Pino NJ; Dominguez MC; Penuela GA
    J Environ Sci Health B; 2011; 46(2):173-80. PubMed ID: 21328125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp.
    Siddavattam D; Khajamohiddin S; Manavathi B; Pakala SB; Merrick M
    Appl Environ Microbiol; 2003 May; 69(5):2533-9. PubMed ID: 12732518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency.
    Xie J; Zhao Y; Zhang H; Liu Z; Lu Z
    Lett Appl Microbiol; 2014 Jan; 58(1):53-9. PubMed ID: 24010722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organophosphorus pesticide ozonation and formation of oxon intermediates.
    Wu J; Lan C; Chan GY
    Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative metabolism of fenitrothion and methylparathion in male rats.
    Yamamoto T; Egashira T; Yoshida T; Kuroiwa Y
    Acta Pharmacol Toxicol (Copenh); 1983 Aug; 53(2):96-102. PubMed ID: 6624487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localisation of identical organophosphorus pesticide degrading (opd) genes on genetically dissimilar indigenous plasmids of soil bacteria: PCR amplification, cloning and sequencing of opd gene from Flavobacterium balustinum.
    Somara S; Manavathi B; Tebbe CC; Siddavatam D
    Indian J Exp Biol; 2002 Jul; 40(7):774-9. PubMed ID: 12602326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of organophosphorus insecticides and their hydrolysis products by liquid chromatography in combination with UV and thermospray-mass spectrometric detection.
    Farran A; De Pablo J; Barceló D
    J Chromatogr; 1988 Nov; 455():163-72. PubMed ID: 3235610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of organophosphorus pesticide detoxifying bacterial colonies, using UV-photography of parathion-impregnated filters.
    McDaniel CS; Wild JR
    Arch Environ Contam Toxicol; 1988 Mar; 17(2):189-94. PubMed ID: 3355233
    [No Abstract]   [Full Text] [Related]  

  • 31. Biotransformation of the organophosphorus insecticides parathion and methyl parathion in male and female rat livers perfused in situ.
    Zhang HX; Sultatos LG
    Drug Metab Dispos; 1991; 19(2):473-7. PubMed ID: 1676657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of interfacial reactions in biodegradation: A case study in a montmorillonite, Pseudomonas sp. Z1 and methyl parathion ternary system.
    Rong X; Zhao G; Fein JB; Yu Q; Huang Q
    J Hazard Mater; 2019 Mar; 365():245-251. PubMed ID: 30447631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring of the pesticide diazinon in soil, stem and surface water of rice fields.
    Ghassempour A; Mohammadkhah A; Najafi F; Rajabzadeh M
    Anal Sci; 2002 Jul; 18(7):779-83. PubMed ID: 12137373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene.
    Li X; He J; Li S
    Res Microbiol; 2007 Mar; 158(2):143-9. PubMed ID: 17306510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the effect of an equimolar and low dose of fenitrothion and methylparathion on their own metabolism in rat liver.
    Yamamoto T; Egashira T; Yoshida T; Kuroiwa Y
    J Toxicol Sci; 1982 Feb; 7(1):35-41. PubMed ID: 7097808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100.
    Hayatsu M; Hirano M; Tokuda S
    Appl Environ Microbiol; 2000 Apr; 66(4):1737-40. PubMed ID: 10742273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver.
    Mutch E; Williams FM
    Toxicology; 2006 Jul; 224(1-2):22-32. PubMed ID: 16757081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A colorimetric assay for determination of methyl parathion using recombinant methyl parathion hydrolase.
    Anh DH; Cheunrungsikul K; Wichitwechkarn J; Surareungchai W
    Biotechnol J; 2011 May; 6(5):565-71. PubMed ID: 21381204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils.
    Fernández-López MG; Popoca-Ursino C; Sánchez-Salinas E; Tinoco-Valencia R; Folch-Mallol JL; Dantán-González E; Laura Ortiz-Hernández M
    Microbiologyopen; 2017 Oct; 6(5):. PubMed ID: 28714263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin.
    Hong Y; Zhou J; Hong Q; Wang Q; Jiang J; Li S
    J Environ Manage; 2010 Nov; 91(11):2295-300. PubMed ID: 20624669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.