These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7228819)

  • 41. Detoxification of pesticides by microbial enzymes.
    Johnson LM; Talbot HW
    Experientia; 1983 Nov; 39(11):1236-46. PubMed ID: 6357841
    [No Abstract]   [Full Text] [Related]  

  • 42. [Effects of p-nitrophenol and organophosphorous nitroaromatic insecticides on the respiratory activity of free and immobilized cells of strains S-11 and BA-11 of Pseudomonas putida].
    Ignatov OV; Guliĭ OI; Singirtsev IN; Shcherbakov AA; Makarov OE; Ignatov VV
    Prikl Biokhim Mikrobiol; 2002; 38(3):278-85. PubMed ID: 12068580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymatic hydrolysis of concentrated diazinon in soil.
    Barik S; Munnecke DM
    Bull Environ Contam Toxicol; 1982 Aug; 29(2):235-9. PubMed ID: 6289949
    [No Abstract]   [Full Text] [Related]  

  • 44. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates.
    Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A
    Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism of methylcarbamate insecticides in soils.
    Kazano H; Kearney PC; Kaufman DD
    J Agric Food Chem; 1972; 20(5):975-9. PubMed ID: 5057450
    [No Abstract]   [Full Text] [Related]  

  • 46. Bioremediation of methylparathion by free and immobilized cells of Bacillus sp. isolated from soil.
    Sreenivasulu C; Aparna Y
    Bull Environ Contam Toxicol; 2001 Jul; 67(1):98-105. PubMed ID: 11381318
    [No Abstract]   [Full Text] [Related]  

  • 47. Biological degradation of isoproturon, chlortoluron and fenitrothion.
    Cernáková M
    Folia Microbiol (Praha); 1995; 40(2):201-6. PubMed ID: 8851564
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anaerobic biodegradation of sumithion an organophosphorus insecticide used in Burkina Faso agriculture by acclimatized indigenous bacteria.
    Savadogo PW; Savadogo A; Ouattara AS; Sedogo MP; Traoré S
    Pak J Biol Sci; 2007 Jun; 10(11):1896-905. PubMed ID: 19086557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates.
    Krishna KR; Philip L
    J Environ Sci Health B; 2008 Feb; 43(2):157-71. PubMed ID: 18246508
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Study on Pseudomonas sp. WBC-3 capable of complete degradation of methylparathion].
    Chen Y; Zhang X; Liu H; Wang Y; Xia X
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):490-7. PubMed ID: 12557558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry.
    Kumar J; D'Souza SF
    Biosens Bioelectron; 2011 Jul; 26(11):4289-93. PubMed ID: 21605969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Confirmation of parathion, methyl parathion and fenitrothion in biological material on thin-layer plates.
    Kurhekar MP; Pundlik MD; Meghal SK
    J Anal Toxicol; 1980; 4(6):322-3. PubMed ID: 7206664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complementary cooperation between two syntrophic bacteria in pesticide degradation.
    Katsuyama C; Nakaoka S; Takeuchi Y; Tago K; Hayatsu M; Kato K
    J Theor Biol; 2009 Feb; 256(4):644-54. PubMed ID: 19038271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of hepatic drug-metabolizing enzymes by thiophosphate insecticides and its drug toxicological implications.
    Uchiyama M; Yoshida T; Homma K; Hongo T
    Biochem Pharmacol; 1975 Jun; 24(11-12):1221-5. PubMed ID: 1137607
    [No Abstract]   [Full Text] [Related]  

  • 55. Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions.
    Fioravante IA; Barbosa FA; Augusti R; Magalhães SM
    J Environ Monit; 2010 Jun; 12(6):1302-6. PubMed ID: 20532383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Parathion utilization by bacterial symbionts in a chemostat.
    Daughton CG; Hsieh DP
    Appl Environ Microbiol; 1977 Aug; 34(2):175-84. PubMed ID: 410368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent.
    Kumar J; Jha SK; D'Souza SF
    Biosens Bioelectron; 2006 May; 21(11):2100-5. PubMed ID: 16298521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial decontamination of parathion and p-nitrophenol in aqueous media.
    Munnecke DM; Hsieh DP
    Appl Microbiol; 1974 Aug; 28(2):212-7. PubMed ID: 4853209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Urinary excretion of paranitrophenol and alkyl phosphates following ingestion of methyl or ethyl parathion by human subjects.
    Morgan DP; Hetzler HL; Slach EF; Lin LI
    Arch Environ Contam Toxicol; 1977; 6(2-3):159-73. PubMed ID: 900999
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of microbial degradation of cypermethrin and diazinon in organically and conventionally managed soils.
    Fenlon KA; Jones KC; Semple KT
    J Environ Monit; 2007 Jun; 9(6):510-5. PubMed ID: 17554421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.