These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7228874)

  • 1. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging.
    Chiou SH; Chylack LT; Tung WH; Bunn HF
    J Biol Chem; 1981 May; 256(10):5176-80. PubMed ID: 7228874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of nonenzymatic browning products in the human lens.
    Monnier VM; Cerami A
    Biochim Biophys Acta; 1983 Oct; 760(1):97-103. PubMed ID: 6615888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus.
    Garlick RL; Mazer JS; Chylack LT; Tung WH; Bunn HF
    J Clin Invest; 1984 Nov; 74(5):1742-9. PubMed ID: 6438156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic glycosylation in human diabetic lens crystallins.
    Liang JN; Hershorin LL; Chylack LT
    Diabetologia; 1986 Apr; 29(4):225-8. PubMed ID: 3710014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycation of human lens proteins: preferential glycation of alpha A subunits.
    Swamy MS; Abraham A; Abraham EC
    Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lens aging: effects of crystallins.
    Sharma KK; Santhoshkumar P
    Biochim Biophys Acta; 2009 Oct; 1790(10):1095-108. PubMed ID: 19463898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonenzymatic glycosylation of protein does not increase with age in normal human lenses.
    Patrick JS; Thorpe SR; Baynes JW
    J Gerontol; 1990 Jan; 45(1):B18-23. PubMed ID: 2295771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo glycation of bovine lens crystallins.
    Van Boekel MA; Hoenders HJ
    Biochim Biophys Acta; 1992 Sep; 1159(1):99-102. PubMed ID: 1390916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination.
    Bindels JG; Bours J; Hoenders HJ
    Mech Ageing Dev; 1983 Jan; 21(1):1-13. PubMed ID: 6865495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiolation of the gammaB-crystallins in intact bovine lens exposed to hydrogen peroxide.
    Hanson SR; Chen AA; Smith JB; Lou MF
    J Biol Chem; 1999 Feb; 274(8):4735-42. PubMed ID: 9988710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspirin prevents the nonenzymatic glycosylation and carbamylation of the human eye lens crystallins in vitro.
    Rao GN; Cotlier E
    Biochem Biophys Res Commun; 1988 Mar; 151(3):991-6. PubMed ID: 3355566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycation of human lens crystallins: effect of age and aspirin treatment.
    Cherian M; Abraham EC
    Ophthalmic Res; 1993; 25(6):349-54. PubMed ID: 8309673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of human lens crystallins.
    Thomson JA; Augusteyn RC
    Exp Eye Res; 1985 Mar; 40(3):393-410. PubMed ID: 4065234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone activity in the lens.
    Augusteyn RC; Murnane L; Nicola A; Stevens A
    Clin Exp Optom; 2002 Mar; 85(2):83-90. PubMed ID: 11952403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ
    Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallin profiles of calf and bovine lens microsections, stained for free sulfhydryl groups and proteins.
    Bours J; Ahrend MH; Hockwin O
    Lens Eye Toxic Res; 1990; 7(3-4):531-45. PubMed ID: 2100178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related variations in the distribution of crystallins within the bovine lens.
    Bessems GJ; De Man BM; Bours J; Hoenders HJ
    Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.