These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7228874)
21. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Cerami A; Stevens VJ; Monnier VM Metabolism; 1979 Apr; 28(4 Suppl 1):431-7. PubMed ID: 122296 [TBL] [Abstract][Full Text] [Related]
22. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions. Simonneau L; Hervé B; Jacquemin E; Courtois Y Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854 [TBL] [Abstract][Full Text] [Related]
23. Hydration properties of the molecular chaperone alpha-crystallin in the bovine lens. Babizhayev MA; Nikolayev GM; Goryachev SN; Bours J; Martin R Biochemistry (Mosc); 2003 Oct; 68(10):1145-55. PubMed ID: 14616086 [TBL] [Abstract][Full Text] [Related]
24. Site-specific glycation of lens crystallins by ascorbic acid. Ortwerth BJ; Slight SH; Prabhakaram M; Sun Y; Smith JB Biochim Biophys Acta; 1992 Sep; 1117(2):207-15. PubMed ID: 1525182 [TBL] [Abstract][Full Text] [Related]
25. Protein profiles of microsections of the fetal and adult human lens during development and ageing. Bours J; Wegener A; Hofmann D; Födisch HJ; Hockwin O Mech Ageing Dev; 1990 May; 54(1):13-27. PubMed ID: 2195251 [TBL] [Abstract][Full Text] [Related]
26. Cleavage of beta crystallins during maturation of bovine lens. Shih M; Lampi KJ; Shearer TR; David LL Mol Vis; 1998 Feb; 4():4. PubMed ID: 9485487 [TBL] [Abstract][Full Text] [Related]
27. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Su SP; McArthur JD; Truscott RJ; Aquilina JA Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408 [TBL] [Abstract][Full Text] [Related]
28. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses. Manski W; Malinowski K Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353 [TBL] [Abstract][Full Text] [Related]
29. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent. Horwitz J; Emmons T; Takemoto L Curr Eye Res; 1992 Aug; 11(8):817-22. PubMed ID: 1424725 [TBL] [Abstract][Full Text] [Related]
30. Interaction of lens alpha and gamma crystallins during aging of the bovine lens. Peterson J; Radke G; Takemoto L Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431 [TBL] [Abstract][Full Text] [Related]
31. Intracellular degradation and deamidation of alpha-crystallin subunits. Van Kleef SM; Willems-Thijssen W; Hoenders HJ Eur J Biochem; 1976 Jul; 66(3):477-83. PubMed ID: 954752 [TBL] [Abstract][Full Text] [Related]
32. Higher glycation of beta L- and beta S-crystallins in the anterior lens cortex and maximum glycation of gamma-crystallins in the bovine lens nucleus, demonstrated by frozen sectioning, isoelectric focusing and lectin staining. Bours J; Ahrend MH; Utikal KJ Ophthalmic Res; 1998; 30(4):233-43. PubMed ID: 9667054 [TBL] [Abstract][Full Text] [Related]
33. The glycation and cross-linking of isolated lens crystallins by ascorbic acid. Prabhakaram M; Ortwerth BJ Exp Eye Res; 1992 Sep; 55(3):451-9. PubMed ID: 1426076 [TBL] [Abstract][Full Text] [Related]
34. Changes in proteins of the human lens in development and aging. Dilley KJ; Harding JJ Biochim Biophys Acta; 1975 Apr; 386(2):391-408. PubMed ID: 1169968 [TBL] [Abstract][Full Text] [Related]
35. Antisera to synthetic peptides as probes of structural changes during aging of alpha-crystallin from the bovine lens. Takemoto L; Emmons T; Granstrom D; Jacobs S Biochim Biophys Acta; 1989 May; 995(3):259-63. PubMed ID: 2706275 [TBL] [Abstract][Full Text] [Related]
36. Characteristics of -crystallin related to fiber cell development in calf eye lenses. van Kamp GJ; Schats LH; Hoenders HJ Biochim Biophys Acta; 1973 Jan; 295(1):166-73. PubMed ID: 4685069 [No Abstract] [Full Text] [Related]
37. Classification of rat lens crystallins and identification of proteins encoded by rat lens mRNA. Ramaekers F; Dodemont H; Vorstenbosch P; Bloemendal H Eur J Biochem; 1982 Nov; 128(2-3):503-8. PubMed ID: 7151792 [TBL] [Abstract][Full Text] [Related]
38. The oxidative modification of lens proteins. Garland D; Russell P; Zigler JS Basic Life Sci; 1988; 49():347-52. PubMed ID: 3250491 [TBL] [Abstract][Full Text] [Related]
39. Metabolism of crystallin fragments in cell-free extracts of bovine lens: effects of ageing and oxygen free-radicals. Hipkiss AR; Carmichael PL; Zimmermann B Acta Biol Hung; 1991; 42(1-3):243-63. PubMed ID: 1844313 [TBL] [Abstract][Full Text] [Related]
40. Photooxidation of the nonenzymatic browning products in calf lens alpha-crystallin. Liang JN Ophthalmic Res; 1991; 23(5):259-64. PubMed ID: 1784457 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]