These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7229680)

  • 1. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model.
    Frumkes TE; Miller RF; Slaughter M; Dacheux RF
    J Neurophysiol; 1981 Apr; 45(4):783-804. PubMed ID: 7229680
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells.
    Miller RF; Frumkes TE; Slaughter M; Dacheux RF
    J Neurophysiol; 1981 Apr; 45(4):764-82. PubMed ID: 7229679
    [No Abstract]   [Full Text] [Related]  

  • 3. Amacrine cells in Necturus retina: evidence for independent gamma-aminobutyric acid- and glycine-releasing neurons.
    Miller RF; Dacheux RF; Frumkes TE
    Science; 1977 Nov; 198(4318):748-50. PubMed ID: 910159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. I. Receptors, horizontal cells, bipolars, and G-cells.
    Miller RF; Frumkes TE; Slaughter M; Dacheux RF
    J Neurophysiol; 1981 Apr; 45(4):743-63. PubMed ID: 7229678
    [No Abstract]   [Full Text] [Related]  

  • 5. Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells.
    Belgum JH; Dvorak DR; McReynolds JS
    J Physiol; 1984 Sep; 354():273-86. PubMed ID: 6481635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina.
    Wyatt HJ; Day NW
    Science; 1976 Jan; 191(4223):204-5. PubMed ID: 1857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of serine's inhibitory action on neurons in the mudpuppy retina.
    Slaughter MM; Miller RF
    Neuroscience; 1991; 41(2-3):817-25. PubMed ID: 1651465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) I. GABA- and glycine antagonists.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1980 Oct; 58(5):712-25. PubMed ID: 7211260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that glycine and GABA mediate postsynaptic inhibition of bulbar respiratory neurons in the cat.
    Haji A; Takeda R; Remmers JE
    J Appl Physiol (1985); 1992 Dec; 73(6):2333-42. PubMed ID: 1337074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of GABA- and glycine-mediated inhibition of feline retinal ganglion cells in the area centralis.
    Ikeda H; Robbins J
    Brain Res; 1985 Nov; 355(1):1-17. PubMed ID: 3000509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of synaptic transmitter drugs on receptive fields of rabbit retinal ganglion cells.
    Daw NW; Ariel M
    Vision Res; 1981; 21(11):1643-7. PubMed ID: 6278756
    [No Abstract]   [Full Text] [Related]  

  • 13. Sodium action potentials are not required for light-evoked release of GABA or glycine from retinal amacrine cells.
    Bieda MC; Copenhagen DR
    J Neurophysiol; 1999 Jun; 81(6):3092-5. PubMed ID: 10368424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycinergic control of [Leu5]enkephalin levels in chicken retina.
    Boelen MK; Wellard J; Dowton M; Chubb IW; Morgan IG
    Brain Res; 1991 Aug; 557(1-2):221-6. PubMed ID: 1684127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the spontaneous synaptic activity of amacrine cells in the mouse retina.
    Frech MJ; Pérez-León J; Wässle H; Backus KH
    J Neurophysiol; 2001 Oct; 86(4):1632-43. PubMed ID: 11600626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander.
    Hare WA; Owen WG
    J Neurophysiol; 1996 Sep; 76(3):2005-19. PubMed ID: 8890310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture.
    Dichter MA
    Brain Res; 1980 May; 190(1):111-21. PubMed ID: 7378733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural computations in the tiger salamander and mudpuppy outer retinae and an analysis of GABA action from horizontal cells.
    Yang SX; Oğmen H; Maguire G
    Biol Cybern; 2003 Jun; 88(6):450-8. PubMed ID: 12789493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina.
    Stone S; Witkovsky P
    J Physiol; 1984 Aug; 353():249-64. PubMed ID: 6481623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.