These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7229924)

  • 1. Effect of variation of plasma oleic acid concentration on relative concentration of free and protein bound warfarin.
    Schwartz PA; Greene DS; Rhodes CT
    J Pharm Sci; 1981 Jan; 70(1):114-5. PubMed ID: 7229924
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of urapidil to human serum albumin: dependency on free fatty acid concentration.
    Storck J; Kirsten R
    Int J Clin Pharmacol Ther Toxicol; 1991 May; 29(5):204-8. PubMed ID: 2071271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of palmitate and oleate on the binding of warfarin to human serum albumin: stopped-flow studies.
    Rietbrock N; Menke G; Reuter G; Lassmann A; Schmeidl R
    J Clin Chem Clin Biochem; 1985 Nov; 23(11):719-23. PubMed ID: 4086977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin binding to plasma albumin, measured in patients and related to fatty acid concentrations.
    Larsen FG; Larsen CG; Andersen S; Nørgaard A; Hansen HE; Brodersen R
    Eur J Clin Invest; 1986 Feb; 16(1):22-7. PubMed ID: 3084268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple competitive displacement interactions involving human serum albumin, anticoagulants, oleic acid and various drugs.
    Wosilait WD; Ryan MP
    Gen Pharmacol; 1980; 11(4):387-94. PubMed ID: 6156878
    [No Abstract]   [Full Text] [Related]  

  • 6. The effects of oleic acid, tolbutamide, and oxyphenbutazone on the binding of warfarin by human serum albumin.
    Wosilait WD; Ryan MP
    Res Commun Chem Pathol Pharmacol; 1979 Sep; 25(3):577-84. PubMed ID: 504792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy.
    Vorum H; Honoré B
    J Pharm Pharmacol; 1996 Aug; 48(8):870-5. PubMed ID: 8887741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of perfluorochemical emulsion components on human albumin binding of warfarin.
    Parsons DL; Nadkarni SR
    Arch Int Pharmacodyn Ther; 1987 Aug; 288(2):165-74. PubMed ID: 3675079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the fatty acid-induced heterogeneity of the N and B conformations of human serum albumin.
    Dröge JH; Janssen LH; Wilting J
    Biochem Pharmacol; 1985 Sep; 34(18):3299-304. PubMed ID: 4038338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-dependent effects of fatty acids on warfarin binding to albumin.
    Wilding G; Feldhoff RC; Vesell ES
    Biochem Pharmacol; 1977 Jun; 26(12):1143-6. PubMed ID: 560850
    [No Abstract]   [Full Text] [Related]  

  • 11. Intersubject variation of warfarin binding to protein in serum of normal subjects.
    Yacobi A; Stoll RG; DiSanto AR; Levy G
    Res Commun Chem Pathol Pharmacol; 1976 Aug; 14(4):743-6. PubMed ID: 959669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of free fatty acids on the concentration of free thyroxine in human serum: the role of albumin.
    Mendel CM; Frost PH; Cavalieri RR
    J Clin Endocrinol Metab; 1986 Dec; 63(6):1394-9. PubMed ID: 3782424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of warfarin by human albumin in the presence of a perfluorochemical blood substitute.
    Parsons DL; Ravis WR; Clark CR
    Arch Int Pharmacodyn Ther; 1985 Sep; 277(1):4-14. PubMed ID: 4062432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of alpha-1 acid glycoprotein, albumin, and nonesterified fatty acids in serum binding of apazone and warfarin.
    Urien S; Albengres E; Pinquier JL; Tillement JP
    Clin Pharmacol Ther; 1986 Jun; 39(6):683-9. PubMed ID: 3709033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfluorochemical emulsion effect on warfarin binding by fraction V human albumin.
    Parsons DL
    Arch Int Pharmacodyn Ther; 1987 Mar; 286(1):23-30. PubMed ID: 3592858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of thyroxine (T4)-binding serum proteins in oleic acid-induced increase in free T4 in nonthyroidal illnesses.
    Chopra IJ; Huang TS; Solomon DH; Chaudhuri G; Teco GN
    J Clin Endocrinol Metab; 1986 Sep; 63(3):776-9. PubMed ID: 3090096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the N-B transition of human serum albumin on the structure of the warfarin-binding site.
    Kasai-Morita S; Horie T; Awazu S
    Biochim Biophys Acta; 1987 Sep; 915(2):277-83. PubMed ID: 3651475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warfarin metabolites: stereochemical aspects of protein binding and displacement by phenylbutazone.
    Chan E; McLachlan AJ; Rowland M
    Chirality; 1993; 5(8):610-5. PubMed ID: 8305289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the mechanism of the magnesium effect on the warfarin-albumin interaction.
    van der Giesen WF; Wilting J
    Biochem Pharmacol; 1984 May; 33(10):1679-81. PubMed ID: 6732838
    [No Abstract]   [Full Text] [Related]  

  • 20. In vitro effect of Cl2Ca and Cl2Mg on warfarin-human serum albumin (HSA) binding.
    Pérez Gallardo L
    Magnes Res; 1999 Mar; 12(1):43-8. PubMed ID: 10192099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.