These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7229942)

  • 1. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion.
    Nolen RL; Kool LB
    J Pharm Sci; 1981 Apr; 70(4):364-7. PubMed ID: 7229942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Status and problems of fusion reactor development.
    Schumacher U
    Naturwissenschaften; 2001 Mar; 88(3):102-12. PubMed ID: 11402837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.
    Li J; Lindley-Start J; Porch A; Barrow D
    Sci Rep; 2017 Jul; 7(1):6302. PubMed ID: 28740153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility.
    Perkins LJ; Betti R; LaFortune KN; Williams WH
    Phys Rev Lett; 2009 Jul; 103(4):045004. PubMed ID: 19659364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Glucuronidase activity following complex coacervation and spray drying microencapsulation.
    Burgess DJ; Ponsart S
    J Microencapsul; 1998; 15(5):569-79. PubMed ID: 9743913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation induced in gelatin-base coacervation systems by addition of water-soluble nonionic polymers I: Microencapsulation.
    Jizomoto H
    J Pharm Sci; 1984 Jul; 73(7):879-82. PubMed ID: 6470947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Human life and energy production. Prospects opened up by controlled thermonuclear fusion].
    Escande D
    Bull Acad Natl Med; 1997 Mar; 181(3):525-37. PubMed ID: 9203740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.
    Amendt P; Landen OL; Robey HF; Li CK; Petrasso RD
    Phys Rev Lett; 2010 Sep; 105(11):115005. PubMed ID: 20867580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications.
    Ozkan G; Franco P; De Marco I; Xiao J; Capanoglu E
    Food Chem; 2019 Jan; 272():494-506. PubMed ID: 30309574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube.
    MacPhee AG; Casey DT; Clark DS; Felker S; Field JE; Haan SW; Hammel BA; Kroll J; Landen OL; Martinez DA; Michel P; Milovich J; Moore A; Nikroo A; Rice N; Robey HF; Smalyuk VA; Stadermann M; Weber CR
    Phys Rev E; 2017 Mar; 95(3-1):031204. PubMed ID: 28415208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.
    Gauthier P; Chaland F; Masse L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055401. PubMed ID: 15600681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets.
    Kemp A; Meyer-ter-Vehn J; Atzeni S
    Phys Rev Lett; 2001 Apr; 86(15):3336-9. PubMed ID: 11327964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of the microencapsulation process parameters piroxicam by complex coacervation].
    Lamoudi L; Chaumeil JC; Daoud K
    Ann Pharm Fr; 2015 Jan; 73(1):37-42. PubMed ID: 25577015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.
    Schmit PF; Knapp PF; Hansen SB; Gomez MR; Hahn KD; Sinars DB; Peterson KJ; Slutz SA; Sefkow AB; Awe TJ; Harding E; Jennings CA; Chandler GA; Cooper GW; Cuneo ME; Geissel M; Harvey-Thompson AJ; Herrmann MC; Hess MH; Johns O; Lamppa DC; Martin MR; McBride RD; Porter JL; Robertson GK; Rochau GA; Rovang DC; Ruiz CL; Savage ME; Smith IC; Stygar WA; Vesey RA
    Phys Rev Lett; 2014 Oct; 113(15):155004. PubMed ID: 25375715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells.
    Tucker-Schwartz AK; Bei Z; Garrell RL; Jones TB
    Langmuir; 2010 Dec; 26(24):18606-11. PubMed ID: 21082795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of hollow poly(lactic acid) microcapsules from microbubble templates.
    Daiguji H; Takada S; Molino Cornejo JJ; Takemura F
    J Phys Chem B; 2009 Nov; 113(45):15002-9. PubMed ID: 19845373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging methods for the fabrication of polymer capsules.
    Cui J; van Koeverden MP; Müllner M; Kempe K; Caruso F
    Adv Colloid Interface Sci; 2014 May; 207():14-31. PubMed ID: 24210468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcapsules for food.
    Arshady R
    J Microencapsul; 1993; 10(4):413-35. PubMed ID: 8263672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent nuclear measurements of mix in inertial confinement fusion.
    Rygg JR; Frenje JA; Li CK; Séguin FH; Petrasso RD; Glebov VY; Meyerhofer DD; Sangster TC; Stoeckl C
    Phys Rev Lett; 2007 May; 98(21):215002. PubMed ID: 17677782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of taro starch spherical aggregates as wall material for spray drying microencapsulation: Functional, physical and thermal properties.
    Hoyos-Leyva J; Bello-Pérez LA; Agama-Acevedo E; Alvarez-Ramirez J
    Int J Biol Macromol; 2018 Dec; 120(Pt A):237-244. PubMed ID: 30138662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.