These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 722995)

  • 1. Differences in characteristics between glycine and glycylglycine transport in guinea pig small intestine.
    Himukai M; Suzuki Y; Hoshi T
    Jpn J Physiol; 1978; 28(4):499-510. PubMed ID: 722995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of glycylglycine and Na+ at the mucosal border of guinea-pig small intestine. A non-mutual stimulation of transport.
    Himukai M; Kameyama A; Hoshi T
    Biochim Biophys Acta; 1983 Aug; 732(3):659-67. PubMed ID: 6871218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characteristics of carnosine transport and carnosine-induced electrical phenomena by the everted intestine of guinea pig.
    Himukai M
    Jpn J Physiol; 1985; 35(6):945-52. PubMed ID: 3938827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-dependent change in intestinal absorption of dipeptides and their constituent amino acids in the guinea pig.
    Himukai M; Konno T; Hoshi T
    Pediatr Res; 1980 Nov; 14(11):1272-5. PubMed ID: 7454442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of glycyl-L-leucine uptake by guinea-pig small intestine: relative importance of intact-peptide transport.
    Himukai M; Hoshi T
    J Physiol; 1980 May; 302():155-69. PubMed ID: 7411452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of inhibition of glycylglycine transport by glycyl-L-leucine and L-leucine in guinea-pig small intestine.
    Himukai M; Kano-Kameyama A; Hoshi T
    Biochim Biophys Acta; 1982 May; 687(2):170-8. PubMed ID: 7093247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of the role of the peptide transport system in absorption of dipeptides in the rat small intestine in chronic experiments in vivo].
    Gromova LV; Gruzdkov AA
    Zh Evol Biokhim Fiziol; 2009; 45(2):177-83. PubMed ID: 19435259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption.
    Adibi SA
    J Clin Invest; 1971 Nov; 50(11):2266-75. PubMed ID: 5096512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-transport of glycine and sodium across the mucosal border of the midgut epithelium in the marine shrimp, Penaeus marginatus.
    Ahearn GA
    J Physiol; 1976 Jul; 258(3):499-520. PubMed ID: 978497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of dipeptide transport system in human jejunum.
    Adibi SA; Soleimanpour MR
    J Clin Invest; 1974 May; 53(5):1368-74. PubMed ID: 4825229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of transport characteristics of amino beta-lactam antibiotics and dipeptides across rat intestinal brush border membrane.
    Iseki K; Sugawara M; Saitoh H; Miyazaki K; Arita T
    J Pharm Pharmacol; 1989 Sep; 41(9):628-32. PubMed ID: 2573708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of a series of neutral dipeptides including L-alanyl-L-alanine, glycylglycine and glycylsarcosine by hamster jejunum in vitro.
    Matthews DM; Burston D
    Clin Sci (Lond); 1984 Nov; 67(5):541-9. PubMed ID: 6478754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic properties of galactose influx across the mucosal border of guinea pig ileum.
    Suzuki Y
    Tohoku J Exp Med; 1978 Dec; 126(4):301-16. PubMed ID: 715771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of transmural potential changes associated with the proton-peptide co-transport in toad small intestine.
    Abe M; Hoshi T; Tajima A
    J Physiol; 1987 Dec; 394():481-99. PubMed ID: 3443974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Kinetic analysis of glycine and glycylglycine absorption in rat small intestine in chronic experiment].
    Gromova LV; Gruzdkov AA
    Ross Fiziol Zh Im I M Sechenova; 2003 Feb; 89(2):173-83. PubMed ID: 12710187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of mucosal influx of glycylsarcosine, glycine and leucine into hamster jejunum and ileum in vitro.
    Schedl HP; Burston D; Taylor E; Matthews DM
    Clin Sci (Lond); 1979 Jan; 56(1):25-31. PubMed ID: 477181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sites of hydrolysis of dipeptides containing leucine and glycine by rat jejunum in vitro.
    Fern EB; Hider RC; London DR
    Biochem J; 1969 Oct; 114(4):855-61. PubMed ID: 5343798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-independent, hydrogen ion-dependent changes in membrane potential and conductance induced by dipeptides in Triturus enterocytes.
    Shimada T; Hoshi T
    Jpn J Physiol; 1986; 36(3):451-65. PubMed ID: 3773327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual effects of amino-beta-lactam antibiotics and glycylglycine on the transmural potential difference in the small intestinal epithelium of rats.
    Nakashima E; Tsuji A
    J Pharmacobiodyn; 1985 Aug; 8(8):623-32. PubMed ID: 4087130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.