These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7233587)
1. Correlative light optical, scanning electron, and transmission electron microscopy of skeletal muscle in muscular dystrophy and muscular atrophy: a pilot study. Geissinger HD; Vriend RA; Ackerley CA; Yamashiro S Ultrastruct Pathol; 1980; 1(3):327-35. PubMed ID: 7233587 [TBL] [Abstract][Full Text] [Related]
2. An improved direct intermicroscopic (LM leads to SEM leads to TEM) correlative procedure for the examination of mammalian skeletal muscle. Vriend RA; Geissinger HD J Microsc; 1980 Sep; 120(Pt 1):53-64. PubMed ID: 7001029 [TBL] [Abstract][Full Text] [Related]
3. Electronmicroscopy in the study of disorders of skeletal muscle. Fisher ER; Danowski TS Pathol Annu; 1974; 9(0):345-84. PubMed ID: 4609269 [No Abstract] [Full Text] [Related]
4. Possible neurogenic factor in muscular dystrophy: its similarity to denervation atrophy. Dastur DK; Razzak ZA J Neurol Neurosurg Psychiatry; 1973 Jun; 36(3):399-410. PubMed ID: 4714102 [TBL] [Abstract][Full Text] [Related]
5. Scanning electron microscopic study of skeletal muscle. Normal, destrophic, and neurogenic atrophic muscle in mice and humans. Sakuragawa N; Sato T; Tsubaki T Arch Neurol; 1973 Apr; 28(4):247-51. PubMed ID: 4347325 [No Abstract] [Full Text] [Related]
6. Freeze fracture studies of muscle plasma membrane in human muscular dystrophy. Schotland DL; Bonilla E; Wakayama Y Acta Neuropathol; 1981; 54(3):189-97. PubMed ID: 7257728 [TBL] [Abstract][Full Text] [Related]
7. A comparison of the structure of small blood vessels in normal, denervated and dystrophic human muscle. Musch BC; Papapetropoulos TA; McQueen DA; Hudgson P; Weightman D J Neurol Sci; 1975 Oct; 26(2):221-34. PubMed ID: 1176989 [TBL] [Abstract][Full Text] [Related]
8. [Ultrastructural observations on 24 cases of pseudo-hypertrophic muscular dystrophy]. Hang ZB; Luo DR; Wu KM Zhonghua Bing Li Xue Za Zhi; 1994; 23(3):159-61. PubMed ID: 7954955 [TBL] [Abstract][Full Text] [Related]
10. Impaired muscle differentiation in explant cultures of Duchenne muscular dystrophy. Jasmin G; Tautu C; Vanasse M; Brochu P; Simoneau R Lab Invest; 1984 Feb; 50(2):197-207. PubMed ID: 6694359 [TBL] [Abstract][Full Text] [Related]
11. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Koga D; Kusumi S; Shodo R; Dan Y; Ushiki T Microscopy (Oxf); 2015 Dec; 64(6):387-94. PubMed ID: 26206941 [TBL] [Abstract][Full Text] [Related]
12. [Structural and ultrastructural changes in the skeletal muscles of patients in the early stages of Duchenne muscular dystrophy and "possible" carriers]. Bucciolini Di Sagni MG; Vannelli Gori G; Oriolo RA Boll Soc Ital Biol Sper; 1982 May; 58(10):632-8. PubMed ID: 7115577 [TBL] [Abstract][Full Text] [Related]
13. Identification of Duchenne muscular dystrophy carriers. Electron microscopical investigation of skeletal muscle. Ionescu V; Radu H; Nicolescu P Arch Pathol; 1975 Aug; 99(8):436-41. PubMed ID: 1147838 [TBL] [Abstract][Full Text] [Related]
16. An electron-microscopic study of the T-system in progressive muscular dystrophy (Duchenne) using lanthanum. Oguchi K; Tsukagoshi H J Neurol Sci; 1980 Jan; 44(2-3):161-8. PubMed ID: 6153402 [TBL] [Abstract][Full Text] [Related]
17. Light-microscopic study of the beta 1 integrin subunit in human skeletal muscle. Heub D; Neundörfer B Clin Neuropathol; 1997; 16(6):319-27. PubMed ID: 9401799 [TBL] [Abstract][Full Text] [Related]
18. Segmental fibre breakdown and defects of the plasmalemma in diseased human muscles. Schmalbruch H Acta Neuropathol; 1975 Dec; 33(2):129-41. PubMed ID: 1202896 [TBL] [Abstract][Full Text] [Related]