These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 7234962)

  • 21. A rapid method for the detection of early stages of atherosclerotic lesion formation.
    Rogers KA; Karnovsky MJ
    Am J Pathol; 1988 Dec; 133(3):451-5. PubMed ID: 3202115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque.
    Faggiotto A; Ross R
    Arteriosclerosis; 1984; 4(4):341-56. PubMed ID: 6466192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of macrophage-derived foam cells isolated from atherosclerotic lesions of rabbits.
    Naito M; Nomura H; Esaki T; Iguchi A
    Atherosclerosis; 1997 Dec; 135(2):241-7. PubMed ID: 9430374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus.
    Ramachandran S; Vinitha A; Kartha CC
    Cardiovasc Diabetol; 2016 Nov; 15(1):152. PubMed ID: 27809851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life.
    Stary HC
    Eur Heart J; 1990 Aug; 11 Suppl E():3-19. PubMed ID: 1699762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma.
    Ball RY; Stowers EC; Burton JH; Cary NR; Skepper JN; Mitchinson MJ
    Atherosclerosis; 1995 Apr; 114(1):45-54. PubMed ID: 7605375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atherosclerotic lesions in the coronary arteries of hyperlipidemic swine. Part 1. Cell increases, divisions, losses and cells of origin in first 90 days on diet.
    Kim DN; Schmee J; Lee KT; Thomas WA
    Atherosclerosis; 1987 Apr; 64(2-3):231-42. PubMed ID: 3606721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions.
    Polacek D; Lal R; Volin MV; Davies PF
    Am J Pathol; 1993 Feb; 142(2):593-606. PubMed ID: 8382009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model.
    Lessner SM; Prado HL; Waller EK; Galis ZS
    Am J Pathol; 2002 Jun; 160(6):2145-55. PubMed ID: 12057918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study.
    Ohtsuki K; Hayase M; Akashi K; Kopiwoda S; Strauss HW
    Circulation; 2001 Jul; 104(2):203-8. PubMed ID: 11447087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies.
    Klurfeld DM
    Arch Pathol Lab Med; 1985 May; 109(5):445-9. PubMed ID: 2580504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative estimation of lipid-laden cells in atherosclerotic lesions of the human aorta.
    Andreeva ER; Orekhov AN; Smirnov VN
    Acta Anat (Basel); 1991; 141(4):316-23. PubMed ID: 1660667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preservation and structural adaptation of endothelium over experimental foam cell lesions. Quantitative ultrastructural study.
    Taylor KE; Glagov S; Zarins CK
    Arteriosclerosis; 1989; 9(6):881-94. PubMed ID: 2590066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [DNA synthesis in the foam cells of the vascular wall in experimental atherosclerosis in rabbits].
    Babushkina TG; Bobryshev IuV; Vinogradov AG
    Arkh Patol; 1990; 52(1):47-53. PubMed ID: 2337393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a concept.
    van der Wal AC; Becker AE; van der Loos CM; Tigges AJ; Das PK
    Coron Artery Dis; 1994 Jun; 5(6):463-9. PubMed ID: 7952404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotype determination of anti-GM3 positive cells in atherosclerotic lesions of the human aorta. Hypothetical role of ganglioside GM3 in foam cell formation.
    Bobryshev YV; Lord RS; Golovanova NK; Gracheva EV; Zvezdina ND; Prokazova NV
    Biochim Biophys Acta; 2001 Feb; 1535(2):87-99. PubMed ID: 11341997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells.
    Katabuchi H; Yih S; Ohba T; Matsui K; Takahashi K; Takeya M; Okamura H
    Med Electron Microsc; 2003 Dec; 36(4):253-62. PubMed ID: 16228658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendritic cells in the arterial wall express C1q: potential significance in atherogenesis.
    Cao W; Bobryshev YV; Lord RS; Oakley RE; Lee SH; Lu J
    Cardiovasc Res; 2003 Oct; 60(1):175-86. PubMed ID: 14522421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation and characterization of macrophages and smooth muscle cells in rabbit atherosclerotic lesions.
    Naito M; Kuzuya M; Funaki C; Nakayama Y; Asai K; Kuzuya F
    Artery; 1987; 14(5):266-82. PubMed ID: 3662843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular dynamics in early atherosclerotic lesion progression in white carneau pigeons. Spatial and temporal analysis of monocyte and smooth muscle invasion of the intima.
    Jerome WG; Lewis JC
    Arterioscler Thromb Vasc Biol; 1997 Apr; 17(4):654-64. PubMed ID: 9108777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.