These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 7235014)
1. Dual effect of carbonic anhydrase inhibitors on H+ transport by the turtle bladder. Norby LH; Bethencourt D; Schwartz JH Am J Physiol; 1981 May; 240(5):F400-5. PubMed ID: 7235014 [TBL] [Abstract][Full Text] [Related]
2. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder. Schwartz JH Am J Physiol; 1976 Aug; 231(2):565-72. PubMed ID: 8996 [TBL] [Abstract][Full Text] [Related]
3. Carbonic anhydrase function and the epithelial organization of H+ secretion in turtle urinary bladder. Schwartz JH; Rosen S; Steinmetz PR J Clin Invest; 1972 Oct; 51(10):2653-62. PubMed ID: 4626848 [TBL] [Abstract][Full Text] [Related]
4. Relationship between the rate of H+ transport and pathways of glucose metabolism by turtle urinary bladder. Norby LH; Schwartz JH J Clin Invest; 1978 Sep; 62(3):532-8. PubMed ID: 29052 [TBL] [Abstract][Full Text] [Related]
5. Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2. Steinmetz PR J Clin Invest; 1969 Jul; 48(7):1258-65. PubMed ID: 5794249 [TBL] [Abstract][Full Text] [Related]
6. Active H+ transport in the turtle urinary bladder. Coupling of transport to glucose oxidation. Beauwens R; Al-Awqati Q J Gen Physiol; 1976 Oct; 68(4):421-39. PubMed ID: 11270 [TBL] [Abstract][Full Text] [Related]
7. Specialized function of carbonic anhydrase-rich and granular cells of turtle bladder. Schwartz JH; Bethencourt D; Rosen S Am J Physiol; 1982 Jun; 242(6):F627-33. PubMed ID: 6283900 [TBL] [Abstract][Full Text] [Related]
8. Transport of H+ against electrochemical gradients in turtle urinary bladder. Al-awqati Q; Mueller A; Steinmetz PR Am J Physiol; 1977 Dec; 233(6):F502-8. PubMed ID: 23012 [TBL] [Abstract][Full Text] [Related]
9. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase. Steinmetz PR; Husted RF; Mueller A; Beauwens R J Membr Biol; 1981 Mar; 59(1):27-34. PubMed ID: 6264081 [TBL] [Abstract][Full Text] [Related]
10. Distribution of metabolic CO2 and the transported ion species in acidification by turtle bladder. Schwartz JH; Finn JT; Vaughan G; Steinmetz PR Am J Physiol; 1974 Feb; 226(2):283-9. PubMed ID: 4811180 [No Abstract] [Full Text] [Related]
11. Effect of furosemide on ion transport in the turtle bladder: evidence for direct inhibition of active acid-base transport. Ehrenspeck G; Voner C Biochim Biophys Acta; 1985 Jul; 817(2):318-26. PubMed ID: 3925994 [TBL] [Abstract][Full Text] [Related]
12. Use of inhibitors in physiological studies of carbonic anhydrase. Maren TH Am J Physiol; 1977 Apr; 232(4):F291-7. PubMed ID: 403777 [TBL] [Abstract][Full Text] [Related]
13. Effect of cyclic AMP on hydrogen ion secretion by turtle urinary bladder. Lief PD; Mutz BF; Bank N Kidney Int; 1979 Aug; 16(2):103-12. PubMed ID: 41967 [No Abstract] [Full Text] [Related]
14. HCO3-Cl exchange transport in the adaptive response to alkalosis by turtle bladder. Cohen L Am J Physiol; 1980 Aug; 239(2):F167-74. PubMed ID: 7406046 [TBL] [Abstract][Full Text] [Related]
15. Effect of aldosterone on the coupling between H+ transport and glucose oxidation. Al-Awqati Q J Clin Invest; 1977 Dec; 60(6):1240-7. PubMed ID: 21197 [TBL] [Abstract][Full Text] [Related]