These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7235160)

  • 1. Slow rhythmic activity in vegetative nerves similar in frequency to the cardiac cycle in chronic cats.
    Varbanova A; Nikolov N
    Agressologie; 1980; 21(1):21-5. PubMed ID: 7235160
    [No Abstract]   [Full Text] [Related]  

  • 2. Slow rhythmic activity in vegetative nerves synchronous with the respiratory cycle in chronic cats.
    Nikolov N; Varbanova A
    Agressologie; 1980; 21(1):15-9. PubMed ID: 7235159
    [No Abstract]   [Full Text] [Related]  

  • 3. [Rhythmic activity (25--35 Hz) of autonomic nerves and its physiologic role].
    Varbanova A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(3):658-62. PubMed ID: 676514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in baroreceptor-sympathetic coupling during the respiratory cycle.
    Gebber GL; Das M; Barman SM
    Brain Res; 2005 Jun; 1046(1-2):216-23. PubMed ID: 15869746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A prognostic tool in stress research. Even heart frequency reveals a worn out regulatory system].
    Orn P
    Lakartidningen; 2000 Mar; 97(13):1526-8. PubMed ID: 10771525
    [No Abstract]   [Full Text] [Related]  

  • 6. [Interregulation of splanchnic and vagus nerve impulsation].
    Itina LV
    Fiziol Zh SSSR Im I M Sechenova; 1971 May; 57(5):690-6. PubMed ID: 5098795
    [No Abstract]   [Full Text] [Related]  

  • 7. Suppression of heart rate variability after supramaximal exertion.
    Niewiadomski W; Gasiorowska A; Krauss B; Mróz A; Cybulski G
    Clin Physiol Funct Imaging; 2007 Sep; 27(5):309-19. PubMed ID: 17697028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circulatory response and autonomic nervous activity during gum chewing.
    Hasegawa Y; Sakagami J; Ono T; Hori K; Zhang M; Maeda Y
    Eur J Oral Sci; 2009 Aug; 117(4):470-3. PubMed ID: 19627361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Problems of heart autoregulation].
    Kositskiĭ GI
    Kardiologiia; 1967 Nov; 7(11):154-7. PubMed ID: 4389977
    [No Abstract]   [Full Text] [Related]  

  • 10. Correlation of PP and PR intervals in premature low birth weight infants.
    Matsuura H; Hata T; Miyata M; Yoshitani Y; Sano Y; Suzuki K; Yamazaki T; Nomura H; Nagaoka S
    Biol Sci Space; 2003 Oct; 17(3):261-2. PubMed ID: 14676407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Modification of the technic for recording the electrical activity of autonomic nerve fibers in chronic experiments].
    Bagaev VA; Nozdrachev AD
    Fiziol Zh SSSR Im I M Sechenova; 1980 Dec; 66(12):1850-3. PubMed ID: 7461189
    [No Abstract]   [Full Text] [Related]  

  • 12. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.
    Milicević G
    Coll Antropol; 2005 Jun; 29(1):295-300. PubMed ID: 16117339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomic changes during wake-sleep transition: a heart rate variability based approach.
    Shinar Z; Akselrod S; Dagan Y; Baharav A
    Auton Neurosci; 2006 Dec; 130(1-2):17-27. PubMed ID: 16759916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the autonomic nervous system on the Q-T interval in man.
    Browne KF; Zipes DP; Heger JJ; Prystowsky EN
    Am J Cardiol; 1982 Nov; 50(5):1099-103. PubMed ID: 7137037
    [No Abstract]   [Full Text] [Related]  

  • 15. [Synchronization of the background activity of skeletal musculature, autonomic nerves and cerebral structures in cats].
    Nikolov ND
    Neirofiziologiia; 1976; 8(2):146-51. PubMed ID: 179023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural-functional basis of the phylogenetic and ecologic character of central autonomic regulation].
    Klimova-Cherkasova VI
    Fiziol Zh SSSR Im I M Sechenova; 1969 Aug; 55(8):1003-9. PubMed ID: 5357468
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of the autonomic nervous system in the control of heart rate in acceleratively stressed monkeys.
    Life JS; Pince BW
    Aerosp Med; 1969 Jan; 40(1):44-8. PubMed ID: 4973208
    [No Abstract]   [Full Text] [Related]  

  • 18. [Modulating action of neurotensin on the parasympathetic regulation of cardiac rhythm].
    Osadchiĭ OE; Pokrovskiĭ VM; Kurzanov AN
    Biull Eksp Biol Med; 1993 May; 115(5):453-5. PubMed ID: 8043817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of mosapride citrate on gastric motility and autonomic nervous function: evaluation by spectral analyses of heart rate and blood pressure variabilities, and by electrogastrography.
    Endo J; Nomura M; Morishita S; Uemura N; Inoue S; Kishi S; Kawaguchi R; Iga A; Ito S; Nakaya Y
    J Gastroenterol; 2002; 37(11):888-95. PubMed ID: 12483243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior.
    Montano N; Porta A; Cogliati C; Costantino G; Tobaldini E; Casali KR; Iellamo F
    Neurosci Biobehav Rev; 2009 Feb; 33(2):71-80. PubMed ID: 18706440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.