These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7236)

  • 1. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interaction of various acceptors with oxygen anion-radicals in liver microsomes].
    Mishin VM; Pokrovskiĭ AG; Liakhovich VV
    Biokhimiia; 1976 May; 41(5):763-7. PubMed ID: 828858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase].
    Liakhovich VV; Mishin VM; Pokrovskii AG
    Biokhimiia; 1977 Jul; 42(7):1323-30. PubMed ID: 198028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonenzymatic NADPH-dependent reduction of 2,6-dichlorophenol-indophenol.
    Dupuy C; Kaniewski J; Ohayon R; Dème D; Virion A; Pommier J
    Anal Biochem; 1990 Nov; 191(1):16-20. PubMed ID: 1964024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effect of corticosteroids and 100% oxygen on aryl hydrocarbon hydroxylase, cytochrome-c reductase, and free radical formation by rat lung microsomes.
    Ruhmann-Wennhold A; Nelson DH
    Metabolism; 1978 Sep; 27(9):1013-22. PubMed ID: 210349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respective role of superoxide and hydroxyl radical in the activity of the reconstituted microsomal ethanol-oxidizing system.
    Ohnishi K; Lieber CS
    Arch Biochem Biophys; 1978 Dec; 191(2):798-803. PubMed ID: 217312
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of one-electron reduction of quinones by microsomal flavin enzymes: the kinetic analysis between cytochrome B5 and menadione.
    Iyanagi T
    Free Radic Res Commun; 1990; 8(4-6):259-68. PubMed ID: 2113027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticosteroids increase superoxide anion production by rat liver microsomes.
    Nelson DH; Ruhmann-Wennhold A
    J Clin Invest; 1975 Oct; 56(4):1062-5. PubMed ID: 239969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of 1-nitroso-2-naphthol by NADPH in the presence of liver microsomes.
    Leskovac V; Peggins JO; Trivić S; Svircević J; Popović M; Stupar M
    Int J Biochem; 1993 Feb; 25(2):279-86. PubMed ID: 8383068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Microsomal hemoprotein reduction by superoxide radical formed on NADPH-specific flavoprotein].
    Archakov AI; Bachmanova GI; Izotov MV; Kuznetsova GP
    Biokhimiia; 1979 Nov; 44(11):2026-32. PubMed ID: 44683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta).
    Ojha V; Kohli KK
    Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH-cytochrome c (P-450) reductase. Spectrophotometric and stopped flow kinetic studies on the formation of reduced flavoprotein intermediates.
    Yasukochi Y; Peterson JA; Masters BS
    J Biol Chem; 1979 Aug; 254(15):7097-104. PubMed ID: 37249
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor.
    Mohazzab KM; Wolin MS
    Am J Physiol; 1994 Dec; 267(6 Pt 1):L823-31. PubMed ID: 7810686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroxine stimulation of rat liver microsomal NADH-cytochrome c reductase in vitro.
    Faas FH; Carter WJ; Wynn JO
    Life Sci; 1974 Dec; 15(12):2059-68. PubMed ID: 4157284
    [No Abstract]   [Full Text] [Related]  

  • 20. Detection and measurement of drug-induced oxygen radical formation.
    Smith MT; Thor H; Orrenius S
    Methods Enzymol; 1984; 105():505-10. PubMed ID: 6328200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.