BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7236288)

  • 21. Apocytochrome-c competes with pre-ornithine carbamoyl transferase for transport into mitochondria.
    González-Bosch C; Miralles VJ; Hernández-Yago J; Grisolía S
    Biochem Biophys Res Commun; 1987 Aug; 146(3):1318-23. PubMed ID: 3039998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a cytosolic precursor of chick embryo liver mitochondrial delta-aminolevulinate synthase.
    Srivastava G; Borthwick IA; Brooker JD; May BK; Elliott WH
    Biochem Biophys Res Commun; 1983 Jan; 110(1):23-31. PubMed ID: 6838514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rat liver cytochrome c oxidase subunits IV and V: cell-free synthesis as larger molecular weight precursors, mRNA sizes and sites of synthesis.
    Heinrich PC; Schmelzer E; Northemann W; Kaiser C; Witt I
    Prog Clin Biol Res; 1982; 102 Pt B():149-59. PubMed ID: 6187019
    [No Abstract]   [Full Text] [Related]  

  • 24. Reconstitution of mitochondrial protein transport with purified ornithine carbamoyltransferase precursor expressed in Escherichia coli.
    Murakami K; Amaya Y; Takiguchi M; Ebina Y; Mori M
    J Biol Chem; 1988 Dec; 263(34):18437-42. PubMed ID: 3056942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ornithine transcarbamylase in liver mitochondria.
    Mori M; Miura S; Morita T; Takiguchi M; Tatibana M
    Mol Cell Biochem; 1982 Nov; 49(2):97-111. PubMed ID: 6759918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoyl-phosphate synthetase I in isolated hepatocytes.
    Mori M; Morita T; Ikeda F; Amaya Y; Tatibana M; Cohen PP
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6056-60. PubMed ID: 6947214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mitochondrial protease that cleaves the precursor of ornithine carbamoyltransferase. Purification and properties.
    Miura S; Mori M; Amaya Y; Tatibana M
    Eur J Biochem; 1982 Mar; 122(3):641-7. PubMed ID: 7037411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-free synthesis and processing of a large precursor of glutamate dehydrogenase of rat liver.
    Miralles V; Felipo V; Hernández-Yago J; Grisolía S
    Biochem Biophys Res Commun; 1982 Aug; 107(3):1028-36. PubMed ID: 6814429
    [No Abstract]   [Full Text] [Related]  

  • 29. Characterization of a protease apparently involved in processing of pre-ornithine transcarbamylase of rat liver.
    Mori M; Miura S; Tatibana M; Cohen PP
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7044-8. PubMed ID: 7012832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression in Escherichia coli of functional precursor to the rat liver mitochondrial enzyme, ornithine carbamyl transferase. Precursor import and processing in vitro.
    Sheffield WP; Nguyen M; Shore GC
    Biochem Biophys Res Commun; 1986 Jan; 134(1):21-8. PubMed ID: 3511899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of proteins into mitochondria: a high conservation of precursor uptake and processing system.
    Takiguchi M; Miura S; Mori M; Tatibana M
    Comp Biochem Physiol B; 1983; 75(2):227-31. PubMed ID: 6347507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Import of a putative precursor of rat liver mitochondrial glutamic oxaloacetic transaminase into mitochondria.
    Sakakibara R; Kamisaki Y; Wada H
    Biochem Biophys Res Commun; 1981 Sep; 102(1):235-42. PubMed ID: 7306151
    [No Abstract]   [Full Text] [Related]  

  • 33. Differential import and processing of the precursors to F1-ATPase beta-subunit and ornithine carbamyltransferase by liver, spleen, heart and kidney mitochondria.
    Côté C; Boulet D
    Biochem Biophys Res Commun; 1985 May; 129(1):240-7. PubMed ID: 2860903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How do proteins find mitochondria?
    Kolata G
    Science; 1985 Jun; 228(4707):1517-8. PubMed ID: 4012306
    [No Abstract]   [Full Text] [Related]  

  • 35. Processing of pre-ornithine transcarbamylase requires a zinc-dependent protease localized to the mitochondrial matrix.
    Conboy JG; Fenton WA; Rosenberg LE
    Biochem Biophys Res Commun; 1982 Mar; 105(1):1-7. PubMed ID: 7046739
    [No Abstract]   [Full Text] [Related]  

  • 36. Mitochondrial import of rat pre-ornithine transcarbamylase: accurate processing of the precursor form is not required for uptake into mitochondria, nor assembly into catalytically active enzyme.
    Graf L; Lingelbach K; Hoogenraad J; Hoogenraad N
    Protein Eng; 1988 Oct; 2(4):297-300. PubMed ID: 3249743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biogenesis of ornithine transcarbamylase in spfash mutant mice: two cytoplasmic precursors, one mitochondrial enzyme.
    Rosenberg LE; Kalousek F; Orsulak MD
    Science; 1983 Oct; 222(4622):426-8. PubMed ID: 6623083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of polyamines in the transport in vitro of the precursor of ornithine transcarbamylase.
    González-Bosch C; Marcote MJ; Hernández-Yago J
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):815-20. PubMed ID: 1953676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of 4-pentenoate on rat liver ornithine transcarbamylase.
    Glasgow AM
    Pediatr Res; 1977 Apr; 11(4):303-5. PubMed ID: 846784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arginine in the leader peptide is required for both import and proteolytic cleavage of a mitochondrial precursor.
    Horwich AL; Kalousek F; Rosenberg LE
    Proc Natl Acad Sci U S A; 1985 Aug; 82(15):4930-3. PubMed ID: 3895227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.