BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 7236633)

  • 1. Spectral and functional comparisons between the carotenoids of the two antenna complexes of Rhodopseudomonas capsulata.
    Scolnik PA; Zannoni D; Marrs BL
    Biochim Biophys Acta; 1980 Dec; 593(2):230-40. PubMed ID: 7236633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the carotenoid present in the B-800-850 antenna complex from Rhodopseudomonas capsulata as that which responds electrochromically to transmembrane electric fields.
    Webster GD; Cogdell RJ; Lindsay JG
    Biochim Biophys Acta; 1980 Jul; 591(2):321-30. PubMed ID: 7397127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation of reaction center and antenna chromophores in the photosynthetic membrane of Rhodopseudomonas viridis.
    Paillotin G; Vermeglio A; Breton J
    Biochim Biophys Acta; 1979 Feb; 545(2):249-64. PubMed ID: 760778
    [No Abstract]   [Full Text] [Related]  

  • 4. Further evidence for dissipative energy migration via triplet states in photosynthesis. The protective mechanism of carotenoids in Rhodopseudomonas spheroides chromatophores.
    Renger G; Wolff C
    Biochim Biophys Acta; 1977 Apr; 460(1):47-57. PubMed ID: 300630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and circular dichroism of membranes from Rhodopseudomonas capsulata.
    Bolt JD; Sauer K; Shiozawa JA; Drews G
    Biochim Biophys Acta; 1981 May; 635(3):535-41. PubMed ID: 7236676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of light harvesting bacteriochlorophyll.protein complexes from Rhodopseudomonas capsulata.
    Feick R; Drews G
    Biochim Biophys Acta; 1978 Mar; 501(3):499-513. PubMed ID: 629962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The location of the carotenoid in the B800--850 light-harvesting pigment--protein complex from Rhodopseudomonas capsulata.
    Webster GD; Cogdell RJ; Lindsay GJ
    FEBS Lett; 1980 Mar; 111(2):391-4. PubMed ID: 7358180
    [No Abstract]   [Full Text] [Related]  

  • 8. The preparation and characterization of different types of light-harvesting pigment-protein complexes from some purple bacteria.
    Cogdell RJ; Thornber JP
    Ciba Found Symp; 1978 Feb 7-9; (61):61-79. PubMed ID: 110568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata.
    Packham NK; Greenrod JA; Jackson JB
    Biochim Biophys Acta; 1980 Aug; 592(1):130-42. PubMed ID: 7397136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Photodichroism and circular dichroism of reaction centers at 100 k.
    Shuvalov VA; Asadov AA
    Biochim Biophys Acta; 1979 Feb; 545(2):296-308. PubMed ID: 760781
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of the pigment content of an antenna pigment-protein complex from three strains of Rhodopseudomonas sphaeroides.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1978 Jun; 502(3):409-16. PubMed ID: 306835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.
    Fiedor L; Akahane J; Koyama Y
    Biochemistry; 2004 Dec; 43(51):16487-96. PubMed ID: 15610043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH on the peripheral light-harvesting antenna complex for Rhodopseudomonas palustris.
    Feng J; Li X; Liu Y
    Sci China C Life Sci; 2008 Aug; 51(8):760-6. PubMed ID: 18677604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pH, O2, and temperature on the absorption properties of the secondary light-harvesting antenna in members of the family Rhodospirillaceae.
    Uffen RL
    J Bacteriol; 1985 Sep; 163(3):943-50. PubMed ID: 3928601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular dichroism of carotenoids in bacterial light-harvesting complexes: experiments and modeling.
    Georgakopoulou S; van Grondelle R; van der Zwan G
    Biophys J; 2004 Nov; 87(5):3010-22. PubMed ID: 15326029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of Okenone into light harvesting complexes from Allochromatium minutissimum.
    Toropygina OA; Makhneva ZK; Moskalenko AA
    Biochemistry (Mosc); 2005 Nov; 70(11):1231-7. PubMed ID: 16336182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of the carotenoid to the visible circular dichroism of the light-harvesting antenna of Rhodospirillum rubrum.
    Lozano RM; Fernández-Cabrera C; Ramírez JM
    Biochem J; 1990 Sep; 270(2):469-72. PubMed ID: 2119174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotenoid assembly regulates quinone diffusion and the
    Xin J; Shi Y; Zhang X; Yuan X; Xin Y; He H; Shen J; Blankenship RE; Xu X
    Elife; 2023 Sep; 12():. PubMed ID: 37737710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced red shift of the Qx absorption band of light-harvesting bacteriochlorophyll in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides.
    Bowyer JR; Crofts AR
    Arch Biochem Biophys; 1981 Apr; 207(2):416-26. PubMed ID: 6972735
    [No Abstract]   [Full Text] [Related]  

  • 20. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.