These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7236754)

  • 1. Analysis of entrainment of circadian oscillators by skeleton photoperiods using phase transition curves.
    Kawato M; Suzuki R
    Biol Cybern; 1981; 40(2):139-49. PubMed ID: 7236754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Study of Dual Circadian Oscillator Models under Different Skeleton Photoperiods.
    Flôres DEFL; Oda GA
    J Biol Rhythms; 2020 Jun; 35(3):302-316. PubMed ID: 32013693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between free-running period and minimum tolerable light pulse interval of skeleton photoperiods in field mice Mus booduga.
    Sharma VK; Singaravel M; Chandrashekaran MK; Subbaraj R
    Chronobiol Int; 1997 May; 14(3):237-45. PubMed ID: 9167884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian feeding and drinking rhythms in the rat under complete and skeleton photoperiods.
    Rosenwasser AM; Boulos Z; Terman M
    Physiol Behav; 1983 Mar; 30(3):353-9. PubMed ID: 6867133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase sensitivity analysis of circadian rhythm entrainment.
    Gunawan R; Doyle FJ
    J Biol Rhythms; 2007 Apr; 22(2):180-94. PubMed ID: 17440219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment Maps.
    Diekman CO; Bose A
    J Biol Rhythms; 2016 Dec; 31(6):598-616. PubMed ID: 27754956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A circadian surface of entrainment: varying T, τ, and photoperiod in Neurospora crassa.
    Rémi J; Merrow M; Roenneberg T
    J Biol Rhythms; 2010 Oct; 25(5):318-28. PubMed ID: 20876812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different phase responses of the two circadian oscillators in Gonyaulax.
    Morse D; Hastings JW; Roenneberg T
    J Biol Rhythms; 1994; 9(3-4):263-74. PubMed ID: 7772794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian entrainment of the squirrel monkey by extreme photoperiods: interactions between the phasic and tonic effects of light.
    Sulzman FM; Fuller CA; Moore-Ede MC
    Physiol Behav; 1982 Oct; 29(4):637-41. PubMed ID: 7178267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment in a model of the mammalian circadian oscillator.
    Geier F; Becker-Weimann S; Kramer A; Herzel H
    J Biol Rhythms; 2005 Feb; 20(1):83-93. PubMed ID: 15654073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods.
    Stephan FK
    Physiol Behav; 1983 Mar; 30(3):451-62. PubMed ID: 6683413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formal properties of the circadian and photoperiodic systems of Japanese quail: phase response curve and effects of T-cycles.
    Zivkovic BD; Underwood H; Steele CT; Edmonds K
    J Biol Rhythms; 1999 Oct; 14(5):378-90. PubMed ID: 10511005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.
    Roberts L; Leise TL; Welsh DK; Holmes TC
    J Biol Rhythms; 2016 Aug; 31(4):337-51. PubMed ID: 27221103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scheduled activity reorganizes circadian phase of Syrian hamsters under full and skeleton photoperiods.
    Sinclair SV; Mistlberger RE
    Behav Brain Res; 1997 Sep; 87(2):127-37. PubMed ID: 9331481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric effects of light acting via multiple photoreceptors contribute to circadian entrainment in
    Abhilash L; Shafer OT
    Proc Biol Sci; 2023 Sep; 290(2006):20230149. PubMed ID: 37700655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian response reduction in light and response restoration in darkness: a "skeleton" light pulse PRC study in mice (Mus musculus).
    Comas M; Beersma DG; Spoelstra K; Daan S
    J Biol Rhythms; 2007 Oct; 22(5):432-44. PubMed ID: 17876064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.