These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 7236772)
21. X-ray diffraction analysis of cytochrome b5 reconstituted in egg phosphatidylcholine vesicles. Rzepecki LM; Strittmatter P; Herbette LG Biophys J; 1986 Apr; 49(4):829-38. PubMed ID: 3719068 [TBL] [Abstract][Full Text] [Related]
22. [Conformational states of the water-soluble fragment of cytochrome b5. I. pH-induced denaturation]. Basova LV; Il'ina NB; Vasilenko KS; Tiktopulo EI; Bychkova VE Mol Biol (Mosk); 2002; 36(5):891-900. PubMed ID: 12391854 [TBL] [Abstract][Full Text] [Related]
23. Enhancing the stability of microsomal cytochrome b5: a rational approach informed by comparative studies with the outer mitochondrial membrane isoform. Sun N; Wang A; Cowley AB; Altuve A; Rivera M; Benson DR Protein Eng Des Sel; 2005 Dec; 18(12):571-9. PubMed ID: 16246823 [TBL] [Abstract][Full Text] [Related]
25. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
26. A histidine/tryptophan pi-stacking interaction stabilizes the heme-independent folding core of microsomal apocytochrome b5 relative to that of mitochondrial apocytochrome b5. Wang L; Sun N; Terzyan S; Zhang X; Benson DR Biochemistry; 2006 Nov; 45(46):13750-9. PubMed ID: 17105194 [TBL] [Abstract][Full Text] [Related]
27. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate. Loughran PA; Roman LJ; Miller RT; Masters BS Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012 [TBL] [Abstract][Full Text] [Related]
28. Enhancing the thermal stability of mitochondrial cytochrome b5 by introducing a structural motif characteristic of the less stable microsomal isoform. Wang L; Cowley AB; Benson DR Protein Eng Des Sel; 2007 Oct; 20(10):511-20. PubMed ID: 17962223 [TBL] [Abstract][Full Text] [Related]
29. Nature of tryptic attack on cytochrome b5 and further evidence for the two-domain structure of the cytochrome molecule. Tajima S; Enomoto K; Sato R J Biochem; 1978 Dec; 84(6):1573-86. PubMed ID: 739004 [TBL] [Abstract][Full Text] [Related]
30. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5. Shaw PM; Hosea NA; Thompson DV; Lenius JM; Guengerich FP Arch Biochem Biophys; 1997 Dec; 348(1):107-15. PubMed ID: 9390180 [TBL] [Abstract][Full Text] [Related]
31. Resonance Raman spectral properties and stability of manganese protoporphyrin IX cytochrome b5. Gruenke LD; Sun J; Loehr TM; Waskell L Biochemistry; 1997 Jun; 36(23):7114-25. PubMed ID: 9188711 [TBL] [Abstract][Full Text] [Related]
32. Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Pearce RE; McIntyre CJ; Madan A; Sanzgiri U; Draper AJ; Bullock PL; Cook DC; Burton LA; Latham J; Nevins C; Parkinson A Arch Biochem Biophys; 1996 Jul; 331(2):145-69. PubMed ID: 8660694 [TBL] [Abstract][Full Text] [Related]
33. The solution structure of oxidized rat microsomal cytochrome b5. Arnesano F; Banci L; Bertini I; Felli IC Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037 [TBL] [Abstract][Full Text] [Related]
34. The subcellular localization of newly synthesized cytochrome b5. Carlsen J; Christiansen K Cell Biol Int; 1995 Sep; 19(9):759-67. PubMed ID: 7581227 [TBL] [Abstract][Full Text] [Related]
35. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes. Clement B; Behrens D; Amschler J; Matschke K; Wolf S; Havemeyer A Life Sci; 2005 May; 77(2):205-19. PubMed ID: 15862605 [TBL] [Abstract][Full Text] [Related]
36. Probing the backbone dynamics of oxidized and reduced rat microsomal cytochrome b5 via 15N rotating frame NMR relaxation measurements: biological implications. Banci L; Bertini I; Cavazza C; Felli IC; Koulougliotis D Biochemistry; 1998 Sep; 37(35):12320-30. PubMed ID: 9724546 [TBL] [Abstract][Full Text] [Related]
37. Structural propensities in the heme binding region of apocytochrome b5. II. Heme conjugates. Davis RB; Lecomte JT Biopolymers; 2008; 90(4):556-66. PubMed ID: 18398854 [TBL] [Abstract][Full Text] [Related]
38. The role of COOH-terminal anionic residues in binding cytochrome b5 to phospholipid vesicles and biological membranes. Dailey HA; Strittmatter P J Biol Chem; 1981 Feb; 256(4):1677-80. PubMed ID: 7462218 [TBL] [Abstract][Full Text] [Related]
39. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related]
40. pH dependence of heme electrochemistry in cytochromes investigated by multiconformation continuum electrostatic calculations. Hauser K; Mao J; Gunner MR Biopolymers; 2004 May-Jun 5; 74(1-2):51-4. PubMed ID: 15137093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]