These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7236785)
1. [Interactions between heart mitochondrial creatine kinase and oxidative phosphorylation]. Lipskaia TIu; Templ VD; Belousova LV; Molokova EV Biokhimiia; 1980 Aug; 45(8):1347-51. PubMed ID: 7236785 [TBL] [Abstract][Full Text] [Related]
2. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation]. Kuznetsov AV; Saks VA; Kupriianov VV Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057 [No Abstract] [Full Text] [Related]
3. [Functional coupling of creatine phosphokinase and adenylate kinase with adenine nucleotide translocase and its role in regulation of heart mitochondrial respiration]. Dzheia PP; Kal'venas AA; Toleĭkis AI; Prashkiavichius AK Biokhimiia; 1983 Sep; 48(9):1471-8. PubMed ID: 6313078 [TBL] [Abstract][Full Text] [Related]
4. [The role of adenine nucleotide translocator in the regulation of oxidative phosphorylation in heart mitochondria]. Kholodenko BN; Zhilinskene VIu; Borutaĭte VI; Ivanovene LI; Toleĭkis AI Biokhimiia; 1988 Jun; 53(6):1009-12. PubMed ID: 2846076 [TBL] [Abstract][Full Text] [Related]
5. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts. Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072 [TBL] [Abstract][Full Text] [Related]
6. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648 [TBL] [Abstract][Full Text] [Related]
7. Oxidative phosphorylation of creatine by respiring pig heart mitochondria in the absence of added adenine nucleotides. Kim IH; Lee HJ Biochem Int; 1987 Jan; 14(1):103-10. PubMed ID: 3566769 [TBL] [Abstract][Full Text] [Related]
8. [Phosphorylation of creatine and the membrane potential of heart mitochondria]. Liberman EA; Khachatrian GI; Tsofina LM; Elizarova GB; Saks VA Biokhimiia; 1980 Mar; 45(3):418-23. PubMed ID: 7378482 [TBL] [Abstract][Full Text] [Related]
9. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. Laclau MN; Boudina S; Thambo JB; Tariosse L; Gouverneur G; Bonoron-Adèle S; Saks VA; Garlid KD; Dos Santos P J Mol Cell Cardiol; 2001 May; 33(5):947-56. PubMed ID: 11343417 [TBL] [Abstract][Full Text] [Related]
10. Evidence against direct transfer of the adenine nucleotides by the heart mitochondrial creatine kinase-adenine nucleotide translocase complex. Vandegaer KM; Jacobus WE Biochem Biophys Res Commun; 1982 Nov; 109(2):442-8. PubMed ID: 6295395 [No Abstract] [Full Text] [Related]
11. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Aliev MK; Saks VA Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438 [TBL] [Abstract][Full Text] [Related]
12. Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria. Gellerich FN; Laterveer FD; Korzeniewski B; Zierz S; Nicolay K Eur J Biochem; 1998 May; 254(1):172-80. PubMed ID: 9652411 [TBL] [Abstract][Full Text] [Related]
13. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo. Tiivel T; Kadaya L; Kuznetsov A; Käämbre T; Peet N; Sikk P; Braun U; Ventura-Clapier R; Saks V; Seppet EK Mol Cell Biochem; 2000 May; 208(1-2):119-28. PubMed ID: 10939635 [TBL] [Abstract][Full Text] [Related]
14. Involvement of intramitochondrial adenine nucleotides and inorganic phosphate in oxidative phosphorylation of extramitochondrially added adenosine-5'-diphosphate. Hartung KJ; Böhme G; Kunz W Biomed Biochim Acta; 1983; 42(1):15-26. PubMed ID: 6224484 [TBL] [Abstract][Full Text] [Related]
15. Mathematical modeling of intracellular transport processes and the creatine kinase systems: a probability approach. Aliev MK; Saks VA Mol Cell Biochem; 1994; 133-134():333-46. PubMed ID: 7808463 [TBL] [Abstract][Full Text] [Related]
16. Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. Saks VA; Khuchua ZA; Kuznetsov AV Biochim Biophys Acta; 1987 Apr; 891(2):138-44. PubMed ID: 3030419 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. Moreno-Sánchez R Biochim Biophys Acta; 1983 Aug; 724(2):278-85. PubMed ID: 6309222 [TBL] [Abstract][Full Text] [Related]
18. Creatine kinase of heart mitochondria: no changes in its kinetic properties after inhibition of the adenine nucleotide translocator. Gellerich FN; Schlame M; Saks VA Biomed Biochim Acta; 1983; 42(10):1335-7. PubMed ID: 6326761 [TBL] [Abstract][Full Text] [Related]
19. Once again about the functional coupling between mitochondrial creatine kinase and adenine nucleotide translocase. Lipskaya TY; Savchenko MS Biochemistry (Mosc); 2003 Jan; 68(1):68-79. PubMed ID: 12693979 [TBL] [Abstract][Full Text] [Related]