These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7236853)

  • 1. The role of subunit entropy in cooperative assembly. Nucleation of microtubules and other two-dimensional polymers.
    Erickson HP; Pantaloni D
    Biophys J; 1981 May; 34(2):293-309. PubMed ID: 7236853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes.
    Zlotnick A
    J Mol Biol; 1994 Aug; 241(1):59-67. PubMed ID: 8051707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reassessment of the factors affecting microtubule assembly and disassembly in vitro.
    Caudron N; Valiron O; Usson Y; Valiron P; Job D
    J Mol Biol; 2000 Mar; 297(1):211-20. PubMed ID: 10704317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism.
    Ferrone FA; Hofrichter J; Eaton WA
    J Mol Biol; 1985 Jun; 183(4):611-31. PubMed ID: 4020873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric models for cooperative polymerization of linear polymers.
    Miraldi ER; Thomas PJ; Romberg L
    Biophys J; 2008 Sep; 95(5):2470-86. PubMed ID: 18502809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulin oligomers and microtubule assembly studied by time-resolved X-ray scattering: separation of prenucleation and nucleation events.
    Spann U; Renner W; Mandelkow EM; Bordas J; Mandelkow E
    Biochemistry; 1987 Feb; 26(4):1123-32. PubMed ID: 3567159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscopic simulations of microtubule dynamics predict two steady-state processes governing array morphology.
    MourĂ£o M; Schnell S; Shaw SL
    Comput Biol Chem; 2011 Oct; 35(5):269-81. PubMed ID: 22000798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural intermediates in microtubule assembly and disassembly: how and why?
    Nogales E; Wang HW
    Curr Opin Cell Biol; 2006 Apr; 18(2):179-84. PubMed ID: 16495041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-one-dimensional nucleation in dilute polymer solutions.
    Zhang L; Schmit JD
    Phys Rev E; 2016 Jun; 93(6):060401. PubMed ID: 27415194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fluctuating surface structure and free energy on the growth of linear tubular aggregates.
    Hill TL
    Biophys J; 1986 May; 49(5):1017-31. PubMed ID: 3708087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and the kinetics of microtubule assembly.
    Jackson MB; Berkowitz SA
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7302-5. PubMed ID: 6938977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state head-to-tail polymerization of actin or microtubules. II. Two-state and three-state kinetic cycles.
    Hill TL
    Biophys J; 1981 Mar; 33(3):353-71. PubMed ID: 6452913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers.
    Endres D; Zlotnick A
    Biophys J; 2002 Aug; 83(2):1217-30. PubMed ID: 12124301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium ion effects on microtubule nucleation in vitro.
    Martin SR; Butler FM; Clark DC; Zhou JM; Bayley PM
    Biochim Biophys Acta; 1987 Jul; 914(1):96-100. PubMed ID: 3607064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behaviors of individual microtubules and microtubule populations relative to critical concentrations: dynamic instability occurs when critical concentrations are driven apart by nucleotide hydrolysis.
    Jonasson EM; Mauro AJ; Li C; Labuz EC; Mahserejian SM; Scripture JP; Gregoretti IV; Alber M; Goodson HV
    Mol Biol Cell; 2020 Mar; 31(7):589-618. PubMed ID: 31577530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice.
    Martin SR; Schilstra MJ; Bayley PM
    Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility and nucleation in sickle hemoglobin.
    Ivanova M; Jasuja R; Krasnosselskaia L; Josephs R; Wang Z; Ding M; Horiuchi K; Adachi K; Ferrone FA
    J Mol Biol; 2001 Dec; 314(4):851-61. PubMed ID: 11734002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modelling of nucleation in polymers.
    Muthukumar M
    Philos Trans A Math Phys Eng Sci; 2003 Mar; 361(1804):539-56. PubMed ID: 12662453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering.
    Diaz JF; Andreu JM; Diakun G; Towns-Andrews E; Bordas J
    Biophys J; 1996 May; 70(5):2408-20. PubMed ID: 9172767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivalent macromolecules redirect nucleation-dependent fibrillar assembly into discrete nanostructures.
    Song Y; Cheng PN; Zhu L; Moore EG; Moore JS
    J Am Chem Soc; 2014 Apr; 136(14):5233-6. PubMed ID: 24661268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.