BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7237230)

  • 41. Activation and inhibition of rabbit muscle pyruvate kinase by transition-metal ions.
    Ainsworth S; Macfarlane N
    Biochem J; 1975 Jan; 145(1):63-71. PubMed ID: 1238084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of regions of rabbit muscle pyruvate kinase important for allosteric regulation by phenylalanine, detected by H/D exchange mass spectrometry.
    Prasannan CB; Villar MT; Artigues A; Fenton AW
    Biochemistry; 2013 Mar; 52(11):1998-2006. PubMed ID: 23418858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase. 2. A multidimensional thermodynamic linked-function analysis.
    Mesecar AD; Nowak T
    Biochemistry; 1997 Jun; 36(22):6803-13. PubMed ID: 9184163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.
    Consler TG; Uberbacher EC; Bunick GJ; Liebman MN; Lee JC
    J Biol Chem; 1988 Feb; 263(6):2794-801. PubMed ID: 3343233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic effects of proton and phenylalanine on the regulation of muscle pyruvate kinase.
    Consler TG; Jennewein MJ; Cai GZ; Lee JC
    Biochemistry; 1990 Dec; 29(48):10765-71. PubMed ID: 2176882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of two essential cysteines in rabbit muscle pyruvate kinase by the guanine nucleotide analogue 5'[p-(fluorosulfonyl) benzoyl] guanosine.
    Tomich JM; Marti C; Colman RF
    Biochemistry; 1981 Nov; 20(23):6711-20. PubMed ID: 7306531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of ligands on the reactivity of essential sulfhydryls in brain hexokinase. Possible interaction between substrate binding sites.
    Redkar VD; Kenkare UW
    Biochemistry; 1975 Oct; 14(21):4704-12. PubMed ID: 1237313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational changes in the allosteric inhibition of muscle pyruvate kinase by phenylalanine.
    Kayne FJ; Price NC
    Biochemistry; 1972 Nov; 11(23):4415-20. PubMed ID: 5079905
    [No Abstract]   [Full Text] [Related]  

  • 49. The regulatory properties of rabbit muscle pyruvate kinase. The influence of substrate concentrations.
    Ainsworth S; Kinderlerer J; Gregory RB
    Biochem J; 1983 Feb; 209(2):401-11. PubMed ID: 6847625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyruvate kinase during in vitro differentiation of GM-CFC haemopoietic precursor in mice: modulation by L-alanine and L-phenylalanine.
    Cuenllas E; Gaitan S; Bueren JA; Tejero C
    Biochimie; 1989 Jun; 71(6):763-6. PubMed ID: 2502191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AMP-deaminase from human uterine smooth muscle: the effect of DTNB treatment on kinetic and regulatory properties of the enzyme.
    Nagel-Starczynowska G; Kaletha K
    Biochim Biophys Acta; 1993 Aug; 1164(3):261-7. PubMed ID: 8343524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic properties of pyruvate kinase in human maternal leukocytes in fetal malnutrition.
    Mameesh MS; Metcoff J; Costiloe P; Crosby W
    Pediatr Res; 1976 Jun; 10(6):561-5. PubMed ID: 1272633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of chicken pyruvate kinases by amino acids.
    Ibsen KH; Marles SW
    Biochemistry; 1976 Mar; 15(5):1073-9. PubMed ID: 1252426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic regulation of glycolysis in sea bass (Dicentrarchus labrax L.) muscle. I. Kinetic study and characteristic modulators of pyruvate kinase.
    Fideu MD; Maroto ML; Serradilla MC; Pérez ML; Herranz MJ; Ruiz-Amil M
    Rev Esp Fisiol; 1988 Dec; 44(4):381-6. PubMed ID: 3244885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The regulatory properties of rabbit muscle pyruvate kinase. The influence of effector concentrations.
    Gregory RB; Ainsworth S; Kinderlerer J
    Biochem J; 1983 Feb; 209(2):413-5. PubMed ID: 6847626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformational features of bovine heart mitochondrial transhydrogenase.
    Modrak DE; Wu LN; Alberta JA; Fisher RR
    Biochemistry; 1988 Oct; 27(20):7665-71. PubMed ID: 3207696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli.
    Mizuta K; Tokushige M
    Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Allosteric properties of skeletal muscle pyruvate kinase.
    Carminatti H; Jiménez de Asúa L; Leiderman B; Rozengurt E
    J Biol Chem; 1971 Dec; 246(23):7284-8. PubMed ID: 5166752
    [No Abstract]   [Full Text] [Related]  

  • 59. Inhibition of hexose transport in the human erythrocyte by 5, 5'-dithiobis(2-nitrobenzoic acid): role of an exofacial carrier sulfhydryl group.
    May JM
    J Membr Biol; 1989 Jun; 108(3):227-33. PubMed ID: 2778797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamic nonideality as a probe of allosteric mechanisms: preexistence of the isomerization equilibrium for rabbit muscle pyruvate kinase.
    Harris SJ; Winzor DJ
    Arch Biochem Biophys; 1988 Sep; 265(2):458-65. PubMed ID: 3421719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.