These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 7237426)
1. A correlation between cell surface sialyltransferase, sialic acid, and glycosidase activities and the implantability of B16 murine melanoma. Dobrossy L; Pavelic ZP; Bernacki RJ Cancer Res; 1981 Jun; 41(6):2262-6. PubMed ID: 7237426 [TBL] [Abstract][Full Text] [Related]
2. Reversibility of retinoid effect on sialyltransferase activity, sialic acid content and invasive ability of human lung carcinoma cells. Ledinko N; Fazely F Anticancer Res; 1989; 9(6):1669-72. PubMed ID: 2627120 [TBL] [Abstract][Full Text] [Related]
3. Correlation of retinoic acid-enhanced sialyltransferase activity and glycosylation of specific cell surface sialoglycoproteins with growth inhibition in a murine melanoma cell system. Lotan R; Lotan D; Meromsky L Cancer Res; 1984 Dec; 44(12 Pt 1):5805-12. PubMed ID: 6498840 [TBL] [Abstract][Full Text] [Related]
4. Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Irimura T; Gonzalez R; Nicolson GL Cancer Res; 1981 Sep; 41(9 Pt 1):3411-8. PubMed ID: 7260906 [TBL] [Abstract][Full Text] [Related]
5. Organization and neuraminidase susceptibility of sialic acid residues in human melanoma cell lines with different heterotransplantabilities in nude mice. Berthier-Vergnes O; Portoukalian J; Doré JF J Natl Cancer Inst; 1985 Oct; 75(4):605-11. PubMed ID: 3862894 [TBL] [Abstract][Full Text] [Related]
6. The surface glycoproteins of a mouse melanoma growing in culture and as a solid tumor in vivo. Warren L; Zeidman I; Buck CA Cancer Res; 1975 Aug; 35(8):2186-90. PubMed ID: 1167267 [TBL] [Abstract][Full Text] [Related]
7. Serum and host liver activities of glycosidases and sialyltransferases in animals bearing transplantable tumors. Bosmann HB; Spataro AC; Myers MW Res Commun Chem Pathol Pharmacol; 1975 Nov; 12(3):499-512. PubMed ID: 172998 [TBL] [Abstract][Full Text] [Related]
8. Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Sloane BF; Honn KV; Sadler JG; Turner WA; Kimpson JJ; Taylor JD Cancer Res; 1982 Mar; 42(3):980-6. PubMed ID: 7059993 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of experimental pulmonary metastasis of mouse colon adenocarcinoma 26 sublines by a sialic acid:nucleoside conjugate having sialyltransferase inhibiting activity. Kijima-Suda I; Miyamoto Y; Toyoshima S; Itoh M; Osawa T Cancer Res; 1986 Feb; 46(2):858-62. PubMed ID: 3753583 [TBL] [Abstract][Full Text] [Related]
10. Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. Passaniti A; Hart GW J Biol Chem; 1988 Jun; 263(16):7591-603. PubMed ID: 3372501 [TBL] [Abstract][Full Text] [Related]
11. Correlation of the production of plasminogen activator with tumor metastasis in B16 mouse melanoma cell lines. Wang BS; McLoughlin GA; Richie JP; Mannick JA Cancer Res; 1980 Feb; 40(2):288-92. PubMed ID: 7356511 [TBL] [Abstract][Full Text] [Related]
12. Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Harvey BE; Toth CA; Wagner HE; Steele GD; Thomas P Cancer Res; 1992 Apr; 52(7):1775-9. PubMed ID: 1312899 [TBL] [Abstract][Full Text] [Related]
13. Role of cell surface GM3 ganglioside and sialic acid in the antitumor activity of a GM3-based vaccine in the murine B16 melanoma model. Gabri MR; Ripoll GV; Alonso DF; Gómez DE J Cancer Res Clin Oncol; 2002 Dec; 128(12):669-77. PubMed ID: 12474053 [TBL] [Abstract][Full Text] [Related]
14. Increased tumor immunity in mice inoculated with muconomycin A-treated B16 melanoma cells. Brinckerhoff CE; Lubin M Cancer Res; 1978 Nov; 38(11 Pt 1):3668-72. PubMed ID: 698927 [TBL] [Abstract][Full Text] [Related]
15. Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Yei S; Bartholomew RM; Pezzoli P; Gutierrez A; Gouveia E; Bassett D; Soo Hoo W; Carlo DJ Gene Ther; 2002 Oct; 9(19):1302-11. PubMed ID: 12224013 [TBL] [Abstract][Full Text] [Related]
16. Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Gil-Ad I; Shtaif B; Levkovitz Y; Nordenberg J; Taler M; Korov I; Weizman A Oncol Rep; 2006 Jan; 15(1):107-12. PubMed ID: 16328041 [TBL] [Abstract][Full Text] [Related]
17. [Clinical significant of sialic acid concentrations in the serum of melanoma patients]. Hermann WP; Gielen W Hautarzt; 1980 Apr; 31(4):184-7. PubMed ID: 7399910 [TBL] [Abstract][Full Text] [Related]
18. Differences in cell density associated with differences in lung-colonizing ability of B16 melanoma cells. Baniyash M; Netanel T; Witz IP Cancer Res; 1981 Feb; 41(2):433-7. PubMed ID: 7448787 [TBL] [Abstract][Full Text] [Related]
19. Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Chang WW; Yu CY; Lin TW; Wang PH; Tsai YC Biochem Biophys Res Commun; 2006 Mar; 341(2):614-9. PubMed ID: 16427612 [TBL] [Abstract][Full Text] [Related]
20. Isolation and characterization of plasma membranes from transplantable human astrocytoma, oat cell carcinoma, and melanomas. Knowles AF; Leis JF; Kaplan NO Cancer Res; 1981 Oct; 41(10):4031-8. PubMed ID: 6116538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]