BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7238525)

  • 1. Conformational changes of yeast tRNAphe as monitored by 31P NMR.
    Salemink PJ; Reijerse EJ; Mollevanger LC; Hilbers CW
    Eur J Biochem; 1981 Apr; 115(3):635-41. PubMed ID: 7238525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Salemink PJ; Swarthof T; Hilbers CW
    Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imino proton NMR assignments and ion-binding studies on Escherichia coli tRNA3Gly.
    Hyde EI
    Eur J Biochem; 1986 Feb; 155(1):57-68. PubMed ID: 2419133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Metal ion effects and tentative partial assignment of signals.
    Gorenstein DG; Goldfield EM; Chen R; Kovar K; Luxon BA
    Biochemistry; 1981 Apr; 20(8):2141-50. PubMed ID: 7016174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution phosphorus NMR spectroscopy of transfer ribonucleic acids.
    Gorenstein DG; Goldfield EM
    Mol Cell Biochem; 1982 Jul; 46(2):97-120. PubMed ID: 6180293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR studies of ion binding to Escherichia coli tRNAPhe.
    Hyde EI; Reid BR
    Biochemistry; 1985 Jul; 24(16):4315-25. PubMed ID: 3902084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Melting curves and relaxation effects.
    Gorenstein DG; Luxon BA
    Biochemistry; 1979 Aug; 18(17):3796-804. PubMed ID: 383146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P magnetic resonance of tRNA.
    Guéron M; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3482-5. PubMed ID: 242005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nuclear magnetic resonance study of secondary and tertiary structure in yeast tRNAPhe.
    Robillard GT; Tarr CE; Vosman F; Reid BR
    Biochemistry; 1977 Nov; 16(24):5261-73. PubMed ID: 336084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study.
    Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH
    Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid.
    Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE
    Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-1 and phosphorus-31 nuclear magnetic resonance study of the solution structure of Bacillus licheniformis 5S ribonucleic acid.
    Salemink PJ; Raué HA; Heerschap A; Planta RJ; Hilbers CW
    Biochemistry; 1981 Jan; 20(2):265-72. PubMed ID: 7470483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and Mg2+ dependent behavior of pseudouridines at 39th and 55th of yeast tRNAPhe.
    Nagamatsu K; Miyazawa Y
    Nucleic Acids Symp Ser; 1983; (12):133-6. PubMed ID: 6664847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution.
    Römer R; Varadi V
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances.
    Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG
    Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids.
    Gorenstein DG; Schroeder SA; Fu JM; Metz JT; Roongta V; Jones CR
    Biochemistry; 1988 Sep; 27(19):7223-37. PubMed ID: 3207672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.