BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7238525)

  • 21. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the structure and conformational dynamics of yeast phenylalanine-accepting transfer ribonucleic acid in solution.
    Ehrenberg M; Rigler R; Wintermeyer W
    Biochemistry; 1979 Oct; 18(21):4588-99. PubMed ID: 387074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic resonance investigation of the base-pairing structure of Escherichia coli tRNATyr monomer and dimer conformations.
    Rordorf BF; Kearns DR
    Biochemistry; 1976 Jul; 15(15):3320-30. PubMed ID: 782517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence detected circular dichroism study of the anticodon loop of yeast tRNAPhe.
    Turner DH; Tinoco I; Maestre MF
    Biochemistry; 1975 Aug; 14(17):3794-9. PubMed ID: 1100099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1H NMR of valine tRNA modified bases. Evidence for multiple conformations.
    Kastrup RV; Schmidt PG
    Nucleic Acids Res; 1978 Jan; 5(1):257-69. PubMed ID: 347397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of temperature and magnesium ions on the secondary and tertiary structures of tRNAPhe and 23 S RNA - infrared investigations.
    Herbeck R; Zundel G
    Biochim Biophys Acta; 1976 Jan; 418(1):52-62. PubMed ID: 1244851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The conformation of the tRNAPhe anticodon loop monitored by fluorescence.
    Wells BD
    Nucleic Acids Res; 1984 Feb; 12(4):2157-70. PubMed ID: 6366743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea.
    Vlassov VV; Giegé R; Ebel JP
    Eur J Biochem; 1981 Sep; 119(1):51-9. PubMed ID: 7042337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel conformational change of the anticodon region of tRNAPhe (yeast).
    Urbanke C; Maass G
    Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initial stages of the thermal unfolding of yeast phenylalanine transfer RNA as studied by chemical modification: the effect of magnesium.
    Rhodes D
    Eur J Biochem; 1977 Nov; 81(1):91-101. PubMed ID: 412674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnesium ion inner sphere complex in the anticodon loop of phenylalanine transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1982 Jan; 21(1):49-53. PubMed ID: 6916606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Higher-order structure and thermal instability of bovine mitochondrial tRNASerUGA investigated by proton NMR spectroscopy.
    Hayashi I; Kawai G; Watanabe K
    J Mol Biol; 1998 Nov; 284(1):57-69. PubMed ID: 9811542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of a mismatched GA decamer oligodeoxyribonucleotide duplex.
    Nikonowicz EP; Gorenstein DG
    Biochemistry; 1990 Sep; 29(37):8845-58. PubMed ID: 2271561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of distortions in the phosphate backbone conformation of six related octanucleotide duplexes on CD and 31P NMR spectra.
    el antri S; Bittoun P; Mauffret O; Monnot M; Convert O; Lescot E; Fermandjian S
    Biochemistry; 1993 Jul; 32(28):7079-88. PubMed ID: 8393703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of transfer ribonucleic acid unfolding by dynamic nuclear magnetic resonance.
    Johnston PD; Redfield AG
    Biochemistry; 1981 Jul; 20(14):3996-4006. PubMed ID: 7025889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H NMR studies of transfer RNA III: the observed and the computed spectra of the hydrogen-bonded NH resonances of baker's yeast transfer-RNA Phe.
    Kan LS; Ts'o PO
    Nucleic Acids Res; 1977; 4(5):1633-47. PubMed ID: 896471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution nuclear magnetic resonance determination of transfer RNA tertiary base pairs in solution. 1. Species containing a small variable loop.
    Reid BR; Ribeiro NS; McCollum L; Abbate J; Hurd RE
    Biochemistry; 1977 May; 16(10):2086-94. PubMed ID: 324514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.