BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7238525)

  • 41. The 31P-NMR spectrum of the dodecamer d(GACGATATCGTC).
    Ott J; Eckstein F; Connolly BA
    Nucleic Acids Res; 1985 Sep; 13(17):6317-30. PubMed ID: 4047942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proton nuclear magnetic resonance study of the effect of pH on tRNA structure.
    Steinmetz-Kayne M; Benigno R; Kallenbach NR
    Biochemistry; 1977 May; 16(10):1064-73. PubMed ID: 16638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA.
    Quigley GJ; Teeter MM; Rich A
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):64-8. PubMed ID: 343112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure.
    Powers R; Jones CR; Gorenstein DG
    J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution structure of psi32-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Nikonowicz EP
    Nucleic Acids Res; 2005; 33(22):6961-71. PubMed ID: 16377777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V; Guenther RH; Agris PF
    Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multistep mechanism of codon recognition by transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1980 Aug; 19(16):3799-805. PubMed ID: 7407070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of magnesium and polyamines on the structure of yeast tRNAPhe.
    Bolton PH; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):10-9. PubMed ID: 884107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA.
    Chen Y; Sierzputowska-Gracz H; Guenther R; Everett K; Agris PF
    Biochemistry; 1993 Sep; 32(38):10249-53. PubMed ID: 8399153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus-31 nuclear magnetic resonance of ethidium complexes with ribonucleic acid model systems and phenylalanine-accepting transfer ribonucleic acid.
    Goldfield EM; Luxon BA; Bowie V; Gorenstein DG
    Biochemistry; 1983 Jul; 22(14):3336-44. PubMed ID: 6555049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformation of charged and uncharged tRNA.
    Wong YP; Reid BR; Kearns DR
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2193-5. PubMed ID: 4599618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of distortions in the deoxyribose phosphate backbone conformation of duplex oligodeoxyribonucleotide dodecamers containing GT, GG, GA, AC, and GU base-pair mismatches on 31P NMR spectra.
    Roongta VA; Jones CR; Gorenstein DG
    Biochemistry; 1990 Jun; 29(22):5245-58. PubMed ID: 2383544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the function of N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine in transfer ribonucleic acid. Metal ion binding studies.
    Reddy PR; Hamill WD; Chheda GB; Schweizer MP
    Biochemistry; 1981 Aug; 20(17):4979-86. PubMed ID: 6794602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A magnesium-induced conformational transition in the loop of a DNA analog of the yeast tRNA(Phe) anticodon is dependent on RNA-like modifications of the bases of the stem.
    Guenther RH; Hardin CC; Sierzputowska-Gracz H; Dao V; Agris PF
    Biochemistry; 1992 Nov; 31(45):11004-11. PubMed ID: 1445838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manganese(II) as a paramagnetic probe of the tertiary structure of transfer RNA.
    Chao YY; Kearns DR
    Biochim Biophys Acta; 1977 Jul; 477(1):20-7. PubMed ID: 328046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal unfolding of yeast glycine transfer RNA.
    Hilbers CW; Robillard GT; Shulamn RG; Blake RD; Webb PK; Fresco R; Riesner D
    Biochemistry; 1976 May; 15(9):1874-82. PubMed ID: 773427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nuclear magnetic resonance studies on yeast tRNAPhe I. Assignment of the iminoproton resonances of the acceptor and D stem by means of Nuclear Overhauser Effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1982 Nov; 10(21):6981-7000. PubMed ID: 6757870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the removal of the Y base on the conformation of yeast tRNA.
    Kearns DR; Wong KL; Wong YP
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3843-6. PubMed ID: 4590172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.