These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7238708)

  • 1. Periaqueductal gray stimulation: effect on characterized nucleus gigantocellularis neurons in the rat.
    Harris DP; Sinclair JG
    Exp Neurol; 1981 Jun; 72(3):552-8. PubMed ID: 7238708
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrophysiologic evidence for a direct connection between the periaqueductal gray and the nucleus gigantocellularis in the rat.
    Harris DP; Sinclair JG
    Exp Neurol; 1981 Jun; 72(3):544-51. PubMed ID: 7238707
    [No Abstract]   [Full Text] [Related]  

  • 3. Electrophysiological evidence for a projection of the periaqueductal gray matter to nucleus raphe magnus in cat and rat.
    Shah Y; Dostrovsky JO
    Brain Res; 1980 Jul; 193(2):534-8. PubMed ID: 6248165
    [No Abstract]   [Full Text] [Related]  

  • 4. Trigeminal nociceptive and non-nociceptive neurones: brain stem intranuclear projections and modulation by orofacial, periqueductal gray and nucleus raphe magnus stimuli.
    Hu JW; Sessle BJ
    Brain Res; 1979 Jul; 170(3):547-52. PubMed ID: 466429
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia.
    Behbehani MM; Fields HL
    Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual alterations of thalamic nociceptive activity by stimulation of the periaqueductal gray matter.
    Emmers R
    Exp Neurol; 1979 Jul; 65(1):186-201. PubMed ID: 318055
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex, and afferent influences, and effect of naloxone.
    Sessle BJ; Hu JW; Dubner R; Lucier GE
    J Neurophysiol; 1981 Feb; 45(2):193-207. PubMed ID: 6257861
    [No Abstract]   [Full Text] [Related]  

  • 8. Brain functional activity during PAG stimulation-produced analgesia: a 2-DG study.
    Beitz AJ; Buggy J
    Brain Res Bull; 1981 Jun; 6(6):487-94. PubMed ID: 7248813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologic evidence for a projection from periaqueductal gray to nucleus raphe magnus in the rat.
    Pomeroy SL; Behbehani MM
    Brain Res; 1979 Oct; 176(1):143-7. PubMed ID: 487170
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus.
    Sanders KH; Klein CE; Mayor TE; Heym C; Handwerker HO
    Brain Res; 1980 Mar; 186(1):83-97. PubMed ID: 7357452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between central gray and nucleus raphe magnus: role of norepinephrine.
    Behbehani MM; Pomeroy SL; Mack CE
    Brain Res Bull; 1981 May; 6(5):361-4. PubMed ID: 6265039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of transmission in the cuneate nucleus by raphe and periaqueductal gray stimulation.
    Jundi AS; Saadé NE; Banna NR; Jabbur SJ
    Brain Res; 1982 Nov; 250(2):349-52. PubMed ID: 6293643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractory periods and anatomical linkage of the substrates for lateral hypothalamic and periaqueductal gray self-stimulation.
    Bielajew C; Jordan C; Ferme-Enright J; Shizgal P
    Physiol Behav; 1981 Jul; 27(1):95-104. PubMed ID: 6267628
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of stimulation in the periaqueductal grey matter on activity in ascending axons of the rat spinal cord: selective inhibition of activity evoked by afferent A delta and C fibre stimulation and failure of naloxone to reduce inhibition.
    Jurna I
    Brain Res; 1980 Aug; 196(1):33-42. PubMed ID: 7397529
    [No Abstract]   [Full Text] [Related]  

  • 17. Analgesia from rostral brain stem stimulation in the rat.
    Rhodes DL; Liebeskind JC
    Brain Res; 1978 Mar; 143(3):521-32. PubMed ID: 647376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between nucleus centrum medianum and gigantocellular nociceptive neurons.
    Pearl GS; Anderson KV
    Brain Res Bull; 1980; 5(2):203-6. PubMed ID: 7378859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter.
    Bennett GJ; Mayer DJ
    Brain Res; 1979 Aug; 172(2):243-57. PubMed ID: 466474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lesions in nucleus reticularis gigantocellularis: effect on the antinociception produced by micro-injection of morphine and focal electrical stimulation in the periaqueductal gray matter.
    Mohrland JS; McManus DQ; Gebhart GF
    Brain Res; 1982 Jan; 231(1):143-52. PubMed ID: 6275945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.