These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7238708)

  • 41. Periaqueductal gray inhibition of trigeminal subnucleus caudalis unitary responses evoked by dentine and nonnoxious facial stimulation.
    Figueiras R; Buño W; García-Austt E; Delgado JM
    Exp Neurol; 1983 Jul; 81(1):34-49. PubMed ID: 6861950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of electrical stimulation of periaqueductal gray matter on evoked potentials recorded in the primary somesthetic cortical areas of the rat.
    Hernández A; Ruiz S; Pérez H; Soto Moyano R
    Experientia; 1977 Aug; 33(8):1049-51. PubMed ID: 891806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NGC-evoked nociceptive behaviors: I. Effect of nucleus gigantocellularis stimulation.
    Roberts VJ
    Physiol Behav; 1992 Jan; 51(1):65-71. PubMed ID: 1311111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulation-produced analgesia in rats: assessment by two pain tests and correlation with self-stimulation.
    Dennis SG; Choinière M; Melzack R
    Exp Neurol; 1980 May; 68(2):295-309. PubMed ID: 6244977
    [No Abstract]   [Full Text] [Related]  

  • 45. [Influence of periaqueductal gray matter and posterior hypothalamic area on neuronal activity of the spinal dorsal horn (author's transl)].
    Watanabe E; Mayanagi Y; Sano K
    No To Shinkei; 1981 Oct; 33(10):1031-6. PubMed ID: 7317207
    [No Abstract]   [Full Text] [Related]  

  • 46. Brain stem-thalamus reciprocal influences in the cat.
    Mancia M; Margnelli M; Mariotti M; Spreafico R; Broggi G
    Brain Res; 1974 Apr; 69(2):297-314. PubMed ID: 4362813
    [No Abstract]   [Full Text] [Related]  

  • 47. Inhibition of the jaw opening reflex by electrical stimulation of the periaqueductal gray matter in the awake, unrestrained cat.
    Oliveras JL; Woda A; Guilbaud G; Besson JM
    Brain Res; 1974 Jun; 72(2):328-31. PubMed ID: 4838384
    [No Abstract]   [Full Text] [Related]  

  • 48. Cross-tolerance between two brainstem sites supporting stimulation-produced analgesia.
    Thorn-Gray BE; Johnson MH; Ashbrook RM
    Behav Neural Biol; 1982 Sep; 36(1):69-76. PubMed ID: 6301419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogeneous synaptic inputs from the ventrolateral periaqueductal gray matter to neurons responding to somatosensory stimuli in the rostral ventromedial medulla of rats.
    Odeh F; Antal M; Zagon A
    Brain Res; 2003 Jan; 959(2):287-94. PubMed ID: 12493617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An evaluation of stimulation-produced analgesia in the cat.
    Gebhart GF; Toleikis JR
    Exp Neurol; 1978 Dec; 62(3):570-9. PubMed ID: 750210
    [No Abstract]   [Full Text] [Related]  

  • 51. [Centrifugal inhibitory effect of stimulation of the sciatic nerve on A delta-mechanical nociceptors in rat].
    Hu SJ; Yang YL
    Zhen Ci Yan Jiu; 1988; 13(1):52-5, 16. PubMed ID: 3143504
    [No Abstract]   [Full Text] [Related]  

  • 52. Inhibition of neuronal activity of the substantia nigra by noxious stimuli and its modification by the caudate nucleus.
    Tsai CT; Nakamura S; Iwama K
    Brain Res; 1980 Aug; 195(2):299-311. PubMed ID: 7397503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the paratrigeminal nucleus in the pressor response to sciatic nerve stimulation in the rat.
    Caous CA; Koepp J; Couture R; Balan AC; Lindsey CJ
    Auton Neurosci; 2008 Jun; 140(1-2):72-9. PubMed ID: 18511351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NGC-evoked nociceptive behaviors: II. Effect of midbrain and thalamus lesions.
    Roberts VJ
    Physiol Behav; 1992 Jan; 51(1):73-80. PubMed ID: 1311112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characteristic features of augmenting and recruiting responses in the cerebral cortex.
    Sasaki K; Staunton HP; Dieckmann G
    Exp Neurol; 1970 Feb; 26(2):369-92. PubMed ID: 4313184
    [No Abstract]   [Full Text] [Related]  

  • 56. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ascending inhibition of nociceptive neurons in the nucleus ventralis posterolateralis following conditioning stimulation of the nucleus raphe magnus.
    Koyama N; Yokota T
    Brain Res; 1993 Apr; 609(1-2):298-306. PubMed ID: 8099523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition and excitation of primate spinothalamic tract neurons by stimulation in region of nucleus reticularis gigantocellularis.
    Haber LH; Martin RF; Chung JM; Willis WD
    J Neurophysiol; 1980 Jun; 43(6):1578-93. PubMed ID: 6251179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for involvement of the frontal cortex in pain-related cerebral events in cats: increase in local cerebral blood flow by noxious stimuli.
    Tsubokawa T; Katayama Y; Ueno Y; Moriyasu N
    Brain Res; 1981 Jul; 217(1):179-85. PubMed ID: 7260616
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of cerebral cortical neurones by a 5-hydroxytryptaminergic pathway from median raphé nucleus.
    Sastry BS; Phillis JW
    Can J Physiol Pharmacol; 1977 Jun; 55(3):737-43. PubMed ID: 884623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.