These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 7238905)
1. Mechanisms of the mucosa-negative transepithelial potential produced by amphotericin B in gallbladder epithelium. Reuss L Fed Proc; 1981 Jun; 40(8):2206-12. PubMed ID: 7238905 [TBL] [Abstract][Full Text] [Related]
2. Effects of amphotericin b on the electrical properties of Necturus gallbladder: intracellular microelectrode studies. Reuss L J Membr Biol; 1978 Jun; 41(1):65-86. PubMed ID: 671519 [TBL] [Abstract][Full Text] [Related]
3. Antibiotics as tools for studying the electrical properties of tight epithelia. Wills NK Fed Proc; 1981 Jun; 40(8):2202-5. PubMed ID: 6165622 [TBL] [Abstract][Full Text] [Related]
4. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. Reuss L; Weinman SA; Grady TP J Gen Physiol; 1980 Jul; 76(1):33-52. PubMed ID: 7411111 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. Reuss L; Cheung LY; Grady TP J Membr Biol; 1981 Apr; 59(3):211-24. PubMed ID: 7241581 [TBL] [Abstract][Full Text] [Related]
6. Potassium transport mechanisms by amphibian gallbladder. Reuss L Soc Gen Physiol Ser; 1981; 36():109-28. PubMed ID: 6792713 [No Abstract] [Full Text] [Related]
7. Regulation of apical and basolateral K+ conductances in rat colon. Schultheiss G; Diener M Br J Pharmacol; 1997 Sep; 122(1):87-94. PubMed ID: 9298532 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium. Altenberg GA; Stoddard JS; Reuss L J Gen Physiol; 1992 Feb; 99(2):241-62. PubMed ID: 1613485 [TBL] [Abstract][Full Text] [Related]
13. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder: III. Ionic permeability of the basolateral cell membrane. Reuss L J Membr Biol; 1979 May; 47(3):239-59. PubMed ID: 480334 [TBL] [Abstract][Full Text] [Related]
14. Electrophysiological effects of mucosal Cl- removal in Necturus gallbladder epithelium. Stoddard JS; Reuss L Am J Physiol; 1989 Sep; 257(3 Pt 1):C568-78. PubMed ID: 2506759 [TBL] [Abstract][Full Text] [Related]
15. Effects of amphotericin B on ion transport proteins in airway epithelial cells. Jornot L; Rochat T; Caruso A; Lacroix JS J Cell Physiol; 2005 Sep; 204(3):859-70. PubMed ID: 15799030 [TBL] [Abstract][Full Text] [Related]
16. Pseudo-streaming potentials in Necturus gallbladder epithelium. II. The mechanism is a junctional diffusion potential. Reuss L; Simon B; Cotton CU J Gen Physiol; 1992 Mar; 99(3):317-38. PubMed ID: 1588300 [TBL] [Abstract][Full Text] [Related]
17. Active sodium transport and fluid secretion in the gall-bladder epithelium of Necturus. Giraldez F J Physiol; 1984 Mar; 348():431-55. PubMed ID: 6716291 [TBL] [Abstract][Full Text] [Related]
18. Electrolyte transport by gallbladders of rabbit and guinea pig: effect of amphotericin B and evidence of rheogenic Na transport. Rose RC; Nahrwold DL J Membr Biol; 1976 Oct; 29(1-2):1-22. PubMed ID: 978715 [TBL] [Abstract][Full Text] [Related]
19. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP). Ponec J; Bakos P; Lichardus B Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663 [TBL] [Abstract][Full Text] [Related]
20. Electrical properties of the rabbit cortical collecting duct from obstructed and contralateral kidneys after unilateral ureteral obstruction. Muto S; Miyata Y; Asano Y J Clin Invest; 1993 Aug; 92(2):571-81. PubMed ID: 8349797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]