These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 7239968)

  • 1. The problem of stress bearing and architecture in bone: analysis of human vertebrae.
    Oxnard CE
    J Am Osteopath Assoc; 1980 Dec; 80(4):280-7. PubMed ID: 7239968
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine.
    Guo LX; Zhang M; Wang ZW; Zhang YM; Wen BC; Li JL
    Comput Biol Med; 2008 Jan; 38(1):146-51. PubMed ID: 17931615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A normal sagittal spinal configuration: a desirable clinical outcome.
    Cooperstein R
    J Manipulative Physiol Ther; 1997 Feb; 20(2):136-7; author reply 137-9. PubMed ID: 9046464
    [No Abstract]   [Full Text] [Related]  

  • 4. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis.
    Lafage V; Gangnet N; Sénégas J; Lavaste F; Skalli W
    Spine (Phila Pa 1976); 2007 Jul; 32(16):1706-13. PubMed ID: 17632390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional changes in spine posture at lift onset with changes in lift distance and lift style.
    Gill KP; Bennett SJ; Savelsbergh GJ; van Dieën JH
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1599-604. PubMed ID: 17621206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing.
    Najarian S; Dargahi J; Heidari B
    Biomed Mater Eng; 2005; 15(3):145-58. PubMed ID: 15911996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine.
    Keller TS; Ziv I; Moeljanto E; Spengler DM
    J Spinal Disord; 1993 Apr; 6(2):106-13. PubMed ID: 8504221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison.
    Yingling VR; Callaghan JP; McGill SM
    J Spinal Disord; 1999 Oct; 12(5):415-23. PubMed ID: 10549707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of axial load on the sagittal plane curvature of the upright human spine in vivo.
    Meakin JR; Smith FW; Gilbert FJ; Aspden RM
    J Biomech; 2008 Sep; 41(13):2850-4. PubMed ID: 18715567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.
    Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Finite element modeling of lumbar spine and study on its biodynamics].
    Guo L; Liu X; Chen W; Mu E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1084-8. PubMed ID: 18027702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5: anatomic and finite element investigations.
    Ivanov AA; Faizan A; Ebraheim NA; Yeasting R; Goel VK
    Spine (Phila Pa 1976); 2007 Oct; 32(22):2462-6. PubMed ID: 18090086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Anatomical justification of burdening the lumbar spine and pelvis in man].
    Gutmann G
    Fysiatr Revmatol Vestn; 1970 Apr; 48(2):88-92. PubMed ID: 5461832
    [No Abstract]   [Full Text] [Related]  

  • 16. Finite element analysis of the lumbar spine with a new cage using a topology optimization method.
    Zhong ZC; Wei SH; Wang JP; Feng CK; Chen CS; Yu CH
    Med Eng Phys; 2006 Jan; 28(1):90-8. PubMed ID: 16426979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experiment study on stress relaxation and creep of spinal lumbar vertebrae (T12-L5) by simulating operations of excising lumbar disc intervertebrales by the front route and by the back route].
    Yang Y; He J; Ma H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):398-401. PubMed ID: 12557507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct real-time measurement of in vivo forces in the lumbar spine.
    Ledet EH; Tymeson MP; DiRisio DJ; Cohen B; Uhl RL
    Spine J; 2005; 5(1):85-94. PubMed ID: 15653089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthropometrical and mechanical considerations in determining normal parameters for the sagittal lumbar spine.
    Troyanovich SJ; Harrison DE
    J Manipulative Physiol Ther; 1997; 20(6):420-4. PubMed ID: 9272475
    [No Abstract]   [Full Text] [Related]  

  • 20. Sustained lumbar traction. An experimental study of long spine segments.
    Twomey LT
    Spine (Phila Pa 1976); 1985 Mar; 10(2):146-9. PubMed ID: 4002038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.