These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7240086)

  • 41. Global Growth Phase Response of the Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota).
    Vital ST; Clausen U; Füssel J; Neumann-Schaal M; Lambertus P; Gehler M; Scheve S; Wöhlbrand L; Dittmar T; Rabus R
    Microb Physiol; 2024; 34(1):153-169. PubMed ID: 38621362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Competitiveness of different polysaccharide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice.
    Salyers AA; Pajeau M
    Appl Environ Microbiol; 1989 Oct; 55(10):2572-8. PubMed ID: 2557798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fermentation of L-aspartate by a saccharolytic strain of Bacteroides melaninogenicus.
    Wong JC; Dyer JK; Tribble JL
    Appl Environ Microbiol; 1977 Jan; 33(1):69-73. PubMed ID: 13713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Utilization of starch and synthesis of a combined amylase/alpha-glucosidase by the human colonic anaerobe Bacteroides ovatus.
    Degnan BA; Macfarlane S; Macfarlane GT
    J Appl Microbiol; 1997 Sep; 83(3):359-66. PubMed ID: 9351216
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth of Bacteroides fragilis in continuous culture and in batch cultures at controlled pH.
    Dalland E; Hofstad T
    Appl Microbiol; 1974 Nov; 28(5):856-60. PubMed ID: 4441065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of outer membrane proteins which are associated with growth of Bacteroides thetaiotaomicron on chondroitin sulfate.
    Kotarski SF; Linz J; Braun DM; Salyers AA
    J Bacteriol; 1985 Sep; 163(3):1080-6. PubMed ID: 2411713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides polypragmatus.
    Patel GB; MacKenzie CR; Agnew BJ
    Arch Microbiol; 1986 Oct; 146(1):68-73. PubMed ID: 3813774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron.
    Degnan BA; Macfarlane GT
    Anaerobe; 1995 Feb; 1(1):25-33. PubMed ID: 16887504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum.
    Lynd LH; Zeikus JG
    J Bacteriol; 1983 Mar; 153(3):1415-23. PubMed ID: 6402496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice.
    Salyers AA; Pajeau M; McCarthy RE
    Appl Environ Microbiol; 1988 Aug; 54(8):1970-6. PubMed ID: 2845859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amylolytic activity of selected species of ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1988 Mar; 54(3):772-6. PubMed ID: 2454075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistence and functional impact of a microbial inoculant on native microbial community structure, nutrient digestion and fermentation characteristics in a rumen model.
    Ziemer CJ; Sharp R; Stern MD; Cotta MA; Whitehead TR; Stahl DA
    Syst Appl Microbiol; 2002 Oct; 25(3):416-22. PubMed ID: 12421079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Digestion of proteoglycan by Bacteroides thetaiotaomicron.
    Kuritza AP; Salyers AA
    J Bacteriol; 1983 Mar; 153(3):1180-6. PubMed ID: 6826520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fermentation of fenugreek fiber, psyllium husk, and wheat bran by Bacteroides ovatus V975.
    Al-Khaldi SF; Martin SA; Prakash L
    Curr Microbiol; 1999 Oct; 39(4):231-2. PubMed ID: 10486060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of inducible disaccharidases to assess the importance of different carbohydrate sources for Bacteroides ovatus growing in the intestinal tracts of germfree mice.
    Valentine PJ; Salyers AA
    Appl Environ Microbiol; 1992 Aug; 58(8):2698-700. PubMed ID: 1514819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. THE INCORPORATION OF LABELLED AMINO SUGARS BY BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):155-8. PubMed ID: 14343124
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake.
    Zhilina TN; Appel R; Probian C; Brossa EL; Harder J; Widdel F; Zavarzin GA
    Arch Microbiol; 2004 Oct; 182(2-3):244-53. PubMed ID: 15340778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1 by a proteomic approach.
    Rabus R; Gade D; Helbig R; Bauer M; Glöckner FO; Kube M; Schlesner H; Reinhardt R; Amann R
    Proteomics; 2002 Jun; 2(6):649-55. PubMed ID: 12112844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.