These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7240086)

  • 61. Relative susceptibilities of the glucosamine-glucuronic acid and N-acetylglucosamine-glucuronic acid linkages to heparin lyase III.
    Chai W; Leteux C; Westling C; Lindahl U; Feizi T
    Biochemistry; 2004 Jul; 43(26):8590-9. PubMed ID: 15222770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron.
    Salyers AA; Kotarski SF
    J Bacteriol; 1980 Aug; 143(2):781-8. PubMed ID: 6782077
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vitro fermentation of mixed linkage glucooligosaccharides produced by Gluconobacter oxydans NCIMB 4943 by the human colonic microflora.
    Wichienchot S; Prasertsan P; Hongpattarakere T; Gibson GR; Rastall RA
    Curr Issues Intest Microbiol; 2006 Mar; 7(1):7-12. PubMed ID: 16570694
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture.
    Hamilton IR; Ellwood DC
    Infect Immun; 1983 Oct; 42(1):19-26. PubMed ID: 6618664
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species.
    Zeybek N; Rastall RA; Buyukkileci AO
    Carbohydr Polym; 2020 May; 236():116076. PubMed ID: 32172889
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellodextrin utilization and beta-glucosidase production by Bacteroides polypragmatus.
    MacKenzie CR; Patel GB
    Arch Microbiol; 1986 Jun; 145(1):91-6. PubMed ID: 3092777
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6.
    Velasco SE; Yebra MJ; Monedero V; Ibarburu I; Dueñas MT; Irastorza A
    Int J Food Microbiol; 2007 Apr; 115(3):325-34. PubMed ID: 17303279
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture.
    Hempfling WP; Mainzer SE
    J Bacteriol; 1975 Sep; 123(3):1076-87. PubMed ID: 169226
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Growth and fermentation responses of Selenomonas ruminantium to limiting and non-limiting concentrations of ammonium chloride.
    Ricke SC; Schaefer DM
    Appl Microbiol Biotechnol; 1996 Sep; 46(2):169-75. PubMed ID: 8987647
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut Symbiont Bacteroides thetaiotaomicron.
    Lammerts van Bueren A; Saraf A; Martens EC; Dijkhuizen L
    Appl Environ Microbiol; 2015 Jun; 81(12):3973-83. PubMed ID: 25841008
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glucose fermentation by Propionibacterium microaerophilum: effect of pH on metabolism and bioenergetic.
    Koussémon M; Combet-Blanc Y; Ollivier B
    Curr Microbiol; 2003 Feb; 46(2):141-5. PubMed ID: 12520370
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus.
    Schicho RN; Ma K; Adams MW; Kelly RM
    J Bacteriol; 1993 Mar; 175(6):1823-30. PubMed ID: 8449888
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of chondroitin sulfate lyase ABC from Bacteroides thetaiotaomicron WAL2926.
    Shaya D; Hahn BS; Park NY; Sim JS; Kim YS; Cygler M
    Biochemistry; 2008 Jun; 47(25):6650-61. PubMed ID: 18512954
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A deletion in the chromosome of Bacteroides thetaiotaomicron that abolishes production of chondroitinase II does not affect survival of the organism in gastrointestinal tracts of exgermfree mice.
    Salyers AA; Guthrie EP
    Appl Environ Microbiol; 1988 Aug; 54(8):1964-9. PubMed ID: 3140726
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Isolation and characterization of outer membranes of Bacteroides thetaiotaomicron grown on different carbohydrates.
    Kotarski SF; Salyers AA
    J Bacteriol; 1984 Apr; 158(1):102-9. PubMed ID: 6715279
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora.
    Dongowski G; Lorenz A; Anger H
    Appl Environ Microbiol; 2000 Apr; 66(4):1321-7. PubMed ID: 10742206
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The metabolism of glucuronic acid by xylose-fermenting coliform bacteria.
    HEALD PJ
    Biochem J; 1952 Nov; 52(3):378-84. PubMed ID: 13018241
    [No Abstract]   [Full Text] [Related]  

  • 80. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes.
    Anderson KL; Salyers AA
    J Bacteriol; 1989 Jun; 171(6):3192-8. PubMed ID: 2722747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.