BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7240132)

  • 1. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores.
    Nakayama H; Tanizawa K; Kanaoka Y; Witkop B
    Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of tryptic enzymes based on enantiomeric specificity at the deacylation step.
    Yamada H; Tanizawa K; Kanaoka Y
    FEBS Lett; 1988 Jan; 227(2):195-7. PubMed ID: 2962887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins.
    Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters.
    Tanizawa K; Kanaoka Y
    J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse substrates: novel synthetic substrates for trypsin and related enzymes.
    Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable acyl-derivatives of trypsin-like enzymes. Preparation, kinetics, application.
    Stürzebecher J
    Biomed Biochim Acta; 1986; 45(11-12):1405-10. PubMed ID: 3579870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme.
    Tanizawa K; Kasaba Y; Kanaoka Y
    J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates".
    Tanizawa K; Nakano M; Lawson WB; Kanaoka Y
    J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The substrate specificity of trypsin. The interrelationship between the structure and reactivity for quasi-substrates, derivatives of O-alkylmethylphosphonic acid and carboxylic acids].
    Klësov AA; Fedoseev VN; Kirret OG
    Biokhimiia; 1977 Nov; 42(11):1939-52. PubMed ID: 588630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific spin-labeling at trypsin active site. Application of 'inverse substrate' to the structural analysis of the active site.
    Fujioka T; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Mar; 612(1):205-12. PubMed ID: 6244849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic peptide synthesis with p-guanidinophenyl and p-(guanidinomethyl)phenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1998 May; 46(5):846-9. PubMed ID: 9621419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Inverse substrates" for trypsin-like enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Pharmacobiodyn; 1980 Apr; 3(4):213-9. PubMed ID: 6451682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity of insect trypsins and the role of their subsites in catalysis.
    Lopes AR; Juliano MA; Marana SR; Juliano L; Terra WR
    Insect Biochem Mol Biol; 2006 Feb; 36(2):130-40. PubMed ID: 16431280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.