BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7240237)

  • 21. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. Direct observation of an intermolecular isotope effect for substrate C-H activation.
    Kadkhodayan S; Coulter ED; Maryniak DM; Bryson TA; Dawson JH
    J Biol Chem; 1995 Nov; 270(47):28042-8. PubMed ID: 7499289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor.
    Schulze H; Hoa GH; Helms V; Wade RC; Jung C
    Biochemistry; 1996 Nov; 35(45):14127-38. PubMed ID: 8916898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations.
    Sligar SG; Debrunner PG; Lipscomb JD; Namtvedt MJ; Gunsalus IC
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3906-10. PubMed ID: 4530269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.
    Raag R; Poulos TL
    Biochemistry; 1989 Jan; 28(2):917-22. PubMed ID: 2713354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regioselectivity in the cytochromes P-450: control by protein constraints and by chemical reactivities.
    White RE; McCarthy MB; Egeberg KD; Sligar SG
    Arch Biochem Biophys; 1984 Feb; 228(2):493-502. PubMed ID: 6696444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvation of the active site of cytochrome P450-cam.
    Wade RC
    J Comput Aided Mol Des; 1990 Jun; 4(2):199-204. PubMed ID: 2213064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-organic chemistry and cytochrome P-450-dependent catalysis.
    Sligar SG; Gelb MH; Heimbrook DC
    Xenobiotica; 1984; 14(1-2):63-86. PubMed ID: 6372267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin.
    Brewer CB; Peterson JA
    J Biol Chem; 1988 Jan; 263(2):791-8. PubMed ID: 2826462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase.
    Sligar SG; Gunsalus IC
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1078-82. PubMed ID: 1063390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450.
    Poulos TL; Finzel BC; Howard AJ
    Biochemistry; 1986 Sep; 25(18):5314-22. PubMed ID: 3768350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutagenesis of a single hydrogen bond in cytochrome P-450 alters cation binding and heme solvation.
    Di Primo C; Hui Bon Hoa G; Douzou P; Sligar S
    J Biol Chem; 1990 Apr; 265(10):5361-3. PubMed ID: 2318818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
    Raag R; Poulos TL
    Biochemistry; 1991 Mar; 30(10):2674-84. PubMed ID: 2001355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Luciferase-dependent, cytochrome P-450-catalyzed dehalogenation in genetically engineered Pseudomonas.
    Shanker R; Atkins WM
    Biotechnol Prog; 1996; 12(4):474-9. PubMed ID: 8987475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome P-450cam substrate and effector interactions.
    Gunsalus IC; Meeks JR; Lipscomb JD
    Ann N Y Acad Sci; 1973; 212():107-21. PubMed ID: 4532472
    [No Abstract]   [Full Text] [Related]  

  • 38. Chemotaxis by Pseudomonas putida (ATCC 17453) towards camphor involves cytochrome P450
    Balaraman P; Plettner E
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):304-312. PubMed ID: 30391161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of elimination reactions during the degradation of 5-bromocamphor by P. putida.
    Banerjee S; Dec G
    Biochem Biophys Res Commun; 1980 May; 94(1):68-70. PubMed ID: 7387704
    [No Abstract]   [Full Text] [Related]  

  • 40. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis.
    Li S; Wackett LP
    Biochemistry; 1993 Sep; 32(36):9355-61. PubMed ID: 8369306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.