These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7240254)

  • 21. The elongation of mismatched primers by DNA polymerase alpha from calf thymus.
    Reckmann B; Grosse F; Krauss G
    Nucleic Acids Res; 1983 Oct; 11(20):7251-60. PubMed ID: 6634414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA polymerase epsilon interacts with proliferating cell nuclear antigen in primer recognition and elongation.
    Maga G; Hübscher U
    Biochemistry; 1995 Jan; 34(3):891-901. PubMed ID: 7827047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calf thymus DNA polymerases alpha and delta are capable of highly processive DNA synthesis.
    Sabatino RD; Myers TW; Bambara RA; Kwon-Shin O; Marraccino RL; Frickey PH
    Biochemistry; 1988 Apr; 27(8):2998-3004. PubMed ID: 3401462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis.
    Tsurimoto T; Stillman B
    J Biol Chem; 1991 Jan; 266(3):1961-8. PubMed ID: 1671046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I.
    McClure WR; Jovin TM
    J Biol Chem; 1975 Jun; 250(11):4073-80. PubMed ID: 1092683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rate-limiting steps in the DNA polymerase I reaction pathway.
    Mizrahi V; Henrie RN; Marlier JF; Johnson KA; Benkovic SJ
    Biochemistry; 1985 Jul; 24(15):4010-8. PubMed ID: 3902078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication of poly dA and poly rA by a drosophila DNA polymerase.
    Brakel CL; Blumenthal AB
    Nucleic Acids Res; 1978 Jul; 5(7):2565-75. PubMed ID: 97638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distamycin paradoxically stimulates the copying of oligo(dA).poly(dT) by DNA polymerases.
    Levy A; Weisman-Shomer P; Fry M
    Biochemistry; 1989 Sep; 28(18):7262-7. PubMed ID: 2819066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoleucyl-tRNA synthetase from bakers' yeast: variable discrimination between tRNAIle and tRNAVal and different pathways of cognate and noncognate aminoacylation under standard conditions, in the presence of pyrophosphatase, elongation factor Tu-GTP complex, and spermine.
    Freist W; Sternbach H
    Biochemistry; 1984 Nov; 23(24):5742-52. PubMed ID: 6151853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Difference in the mechanisms of poly(dT) synthesis by DNA polymerases beta and gamma.
    Matsukage A; Nishizawa M; Takahashi T
    J Biochem; 1979 Jun; 85(6):1551-4. PubMed ID: 457649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly (ADP-ribose) polymerase inhibits DNA replication by human replicative DNA polymerase alpha, delta and epsilon in vitro.
    Eki T
    FEBS Lett; 1994 Dec; 356(2-3):261-6. PubMed ID: 7805850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processive nature of reverse transcription by avian myeloblastosis virus deoxyribonucleic acid polymerase.
    Gregerson DS; Albert J; Reid TW
    Biochemistry; 1980 Jan; 19(2):301-6. PubMed ID: 6153267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady-state kinetics of mouse DNA polymerase alpha.
    Tanabe K; Taguchi YN; Matsukage A; Takahashi T
    J Biochem; 1980 Jul; 88(1):35-8. PubMed ID: 6251037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of primer-template-dependent conversion of dNTP leads to dNMP by T5 DNA polymerase.
    Das SK; Fujimura RK
    J Biol Chem; 1980 Aug; 255(15):7149-54. PubMed ID: 6248549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mouse DNA polymerase accompanied by a novel RNA polymerase activity: purification and partial characterization.
    Yagura T; Kozu T; Seno T
    J Biochem; 1982 Feb; 91(2):607-18. PubMed ID: 7068578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific sequences in native DNA that arrest synthesis by DNA polymerase alpha.
    Weaver DT; DePamphilis ML
    J Biol Chem; 1982 Feb; 257(4):2075-86. PubMed ID: 6460033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.