These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 7240725)

  • 21. Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: an anatomical study using horseradish peroxidase retrograde transport.
    Chaouch A; Menetrey D; Binder D; Besson JM
    J Comp Neurol; 1983 Mar; 214(3):309-20. PubMed ID: 6853760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The raphe nuclei of the rabbit brain stem.
    Felten DL; Cummings JP
    J Comp Neurol; 1979 Sep; 187(1):199-243. PubMed ID: 114552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cells of origin of the spinoreticular tract in the monkey.
    Kevetter GA; Haber LH; Yezierski RP; Chung JM; Martin RF; Willis WD
    J Comp Neurol; 1982 May; 207(1):61-74. PubMed ID: 7096639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study.
    Bowker RM; Westlund KN; Coulter JD
    Brain Res; 1981 Dec; 226(1-2):187-99. PubMed ID: 7028211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem.
    Ottersen OP
    J Comp Neurol; 1981 Nov; 202(3):335-56. PubMed ID: 7298902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.
    Martin GF; Cabana T; Ditirro FJ; Ho RH; Humbertson AO
    J Comp Neurol; 1982 Jun; 208(1):67-84. PubMed ID: 6749912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Termination areas of corticobulbar and corticospinal fibres in the rat.
    Antal M
    J Hirnforsch; 1984; 25(6):647-59. PubMed ID: 6526991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Afferent and efferent connections between the hypothalamus and raphe. Study using the technic of retrograde transport of peroxidases].
    Stanzani S; Russo A
    Boll Soc Ital Biol Sper; 1981 May; 57(9):993-8. PubMed ID: 7284125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Afferent projections from the brainstem to the three floccular zones in cats. II. Mossy fiber projections.
    Sato Y; Kawasaki T; Ikarashi K
    Brain Res; 1983 Aug; 272(1):37-48. PubMed ID: 6616198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gudden's tegmental nuclei and their connections to the hypothalamus and the reticular formation. II. An experimental study using retrograde double labelling with HRP and iron-dextran in the rat.
    Petrovický P
    J Hirnforsch; 1985; 26(5):539-45. PubMed ID: 3936877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. II. Projections from the dorsolateral pontine tegmentum and raphe nuclei.
    Tohyama M; Sakai K; Touret M; Salvert D; Jouvet M
    Brain Res; 1979 Nov; 176(2):215-31. PubMed ID: 497809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal projections to the lateral reticular nucleus in the rat: a retrograde labelling study using horseradish peroxidase.
    Shokunbi MT; Hrycyshyn AW; Flumerfelt BA
    J Comp Neurol; 1985 Sep; 239(2):216-26. PubMed ID: 4044936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An autoradiographical study of the projections from the feline sensorimotor cortex to the brain stem.
    Flindt-Egebak P
    J Hirnforsch; 1979; 20(4):375-90. PubMed ID: 546974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Projection of the mesencephalic raphe nuclei to the magnocellular nuclei of the basal forebrain of the rat: a horseradish peroxidase study].
    Schober W; Lüth HJ; Seidel I
    J Hirnforsch; 1989; 30(6):685-97. PubMed ID: 2628488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens.
    Adli DS; Stuesse SL; Cruce WL
    J Comp Neurol; 1999 Feb; 404(3):387-407. PubMed ID: 9952355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arrangement of neurons in the medullary reticular formation and raphe nuclei projecting to thoracic, lumbar and sacral segments of the spinal cord in the cat.
    Kausz M
    Anat Embryol (Berl); 1991; 183(2):151-63. PubMed ID: 2035851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical neurons projecting to the pontine nuclei in the cat. An experimental study with the horseradish peroxidase technique.
    Kawamura K; Chiba M
    Exp Brain Res; 1979 Apr; 35(2):269-85. PubMed ID: 86454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.