These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 7241)
1. PH-dependence of the steady-state rate of a two-step enzymic reaction. Brocklehurst K; Dixon HB Biochem J; 1976 Apr; 155(1):61-70. PubMed ID: 7241 [TBL] [Abstract][Full Text] [Related]
2. The pH-dependence of second-order rate constants of enzyme modification may provide free-reactant pKa values. Brocklehurst K; Dixon HB Biochem J; 1977 Dec; 167(3):859-62. PubMed ID: 23769 [TBL] [Abstract][Full Text] [Related]
3. pH-dependence of catalytic constants of the enzyme reaction--some remarks. Barth A; Heins J; Schneeweiss B Pharmazie; 1981; 36(2):120-3. PubMed ID: 7232482 [TBL] [Abstract][Full Text] [Related]
4. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: insights from the effects of pH and isotopic substitution on steady-state and pre-steady-state kinetics. Koushik SV; Moore JA; Sundararaju B; Phillips RS Biochemistry; 1998 Feb; 37(5):1376-82. PubMed ID: 9477966 [TBL] [Abstract][Full Text] [Related]
5. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
6. The pH dependence of pre-steady-state and steady-state kinetics for the porcine pancreatic beta-kallikrein-B-catalyzed hydrolysis of N-alpha-carbobenzoxy-L-arginine p-nitrophenyl ester. Ascenzi P; Amiconi G; Bolognesi M; Guarneri M; Menegatti E; Antonini E Biochim Biophys Acta; 1984 Feb; 785(1-2):75-80. PubMed ID: 6559602 [TBL] [Abstract][Full Text] [Related]
7. Fundamental relationships for the effect of proton dissociation equilibria on enzymic reaction steps. Pettersson G Eur J Biochem; 1987 Jul; 166(1):163-5. PubMed ID: 3036518 [TBL] [Abstract][Full Text] [Related]
8. [pH-dependence of tryptophan ethyl ester hydrolysis by alpha-chymotrypsin]. Shviadas VIu; Galaev IIu; Berezin IV Biokhimiia; 1980 Apr; 45(4):629-35. PubMed ID: 7378494 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5. Salih E; Brocklehurst K Biochem J; 1983 Sep; 213(3):713-8. PubMed ID: 6311173 [TBL] [Abstract][Full Text] [Related]
10. The general modifier ("allosteric") unireactant enzyme mechanism: redundant conditions for reduction of the steady state velocity equation to one that is first degree in substrate and effector. Segel IH; Martin RL J Theor Biol; 1988 Dec; 135(4):445-53. PubMed ID: 3256732 [TBL] [Abstract][Full Text] [Related]
11. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261 [TBL] [Abstract][Full Text] [Related]
12. Estimation of the dissociation constants of enzyme-substrate complexes from steady-state measurements. Interpretation of pH-independence of Km. Cornish-Bowden A Biochem J; 1976 Feb; 153(2):455-61. PubMed ID: 6011 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain. Patel M; Kayani IS; Templeton W; Mellor GW; Thomas EW; Brocklehurst K Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):881-9. PubMed ID: 1445247 [TBL] [Abstract][Full Text] [Related]
14. Steady-state kinetic study of fatty acid synthase from chicken liver. Cox BG; Hammes GG Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4233-7. PubMed ID: 6576333 [TBL] [Abstract][Full Text] [Related]
15. pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2'-azinobis. Abelskov AK; Smith AT; Rasmussen CB; Dunford HB; Welinder KG Biochemistry; 1997 Aug; 36(31):9453-63. PubMed ID: 9235990 [TBL] [Abstract][Full Text] [Related]
16. Effects of conformational selectivity and of overlapping kinetically influential ionizations on the characteristics of pH-dependent enzyme kinetics. Implications of free-enzyme pKa variability in reactions of papain for its catalytic mechanism. Brocklehurst K; Willenbrock SJ; Salih E Biochem J; 1983 Jun; 211(3):701-8. PubMed ID: 6309137 [TBL] [Abstract][Full Text] [Related]
17. A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier. Topham CM J Theor Biol; 1990 Aug; 145(4):547-72. PubMed ID: 2246902 [TBL] [Abstract][Full Text] [Related]
18. On the time course of the reversible Michaelis-Menten reaction. Sen AK J Theor Biol; 1988 Dec; 135(4):483-93. PubMed ID: 3256733 [TBL] [Abstract][Full Text] [Related]
19. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Patel M; Kayani IS; Mellor GW; Sreedharan S; Templeton W; Thomas EW; Thomas M; Brocklehurst K Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):553-9. PubMed ID: 1736903 [TBL] [Abstract][Full Text] [Related]
20. The intrinsic pKa-values of functional groups in enzymes: improper deductions from the pH-dependence of steady-state parameters. Knowles JR CRC Crit Rev Biochem; 1976 Nov; 4(2):165-73. PubMed ID: 12913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]