BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7241119)

  • 1. Morphological and electrophysiological evidence for habenular influence on the guinea-pig pineal gland.
    Semm P; Schneider T; Vollrath L
    J Neural Transm; 1981; 50(2-4):247-66. PubMed ID: 7241119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological investigations on the central innervation of the rat and guinea-pig pineal gland.
    Reuss S; Semm P; Vollrath L
    J Neural Transm; 1984; 60(1):31-43. PubMed ID: 6090583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological evidence for central nervous connections of the pigeon's pineal gland.
    Demaine C; Semm P
    Brain Res Bull; 1984 Nov; 13(5):629-34. PubMed ID: 6518397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiology of the pigeon's habenular nuclei: evidence for pineal connections and input from the visual system.
    Semm P; Demaine C
    Brain Res Bull; 1984 Jan; 12(1):115-21. PubMed ID: 6713209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-stimulation of the habenular complex in the rat.
    Sutherland RJ; Nakajima S
    J Comp Physiol Psychol; 1981 Oct; 95(5):781-91. PubMed ID: 6975784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural observations on the central innervation of the guinea-pig pineal gland.
    Schneider T; Semm P; Vollrath L
    Cell Tissue Res; 1981; 220(1):41-9. PubMed ID: 7273131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of the guinea-pig pineal organ: sympathetically influenced cells responding differently to light and darkness.
    Semm P; Vollrath L
    Neurosci Lett; 1979 Apr; 12(1):93-6. PubMed ID: 460708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a nervous connection between the brain and the pineal organ in the guinea pig.
    Korf HW; Wagner U
    Cell Tissue Res; 1980; 209(3):505-10. PubMed ID: 7407842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain.
    Garland JC; Mogenson GJ
    Brain Res; 1983 Mar; 263(1):33-41. PubMed ID: 6301643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habenular asymmetry and the central connections of the parietal eye of the lizard.
    Engbretson GA; Reiner A; Brecha N
    J Comp Neurol; 1981 May; 198(1):155-65. PubMed ID: 7229138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central innervation of the pineal organ of the Mongolian gerbil. A histochemical and lesion study.
    Møller M; Korf HW
    Cell Tissue Res; 1983; 230(2):259-72. PubMed ID: 6850770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat.
    Pittman QJ; Blume HW; Renaud LP
    Brain Res; 1981 Jun; 215(1-2):15-28. PubMed ID: 7260585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct neural projection from the intergeniculate leaflet of the lateral geniculate nucleus to the deep pineal gland of the rat, demonstrated with Phaseolus vulgaris leucoagglutinin.
    Mikkelsen JD; Møller M
    Brain Res; 1990 Jun; 520(1-2):342-6. PubMed ID: 1698506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical responses of pineal cells to melatonin and putative transmitters. Evidence for circadian changes in sensitivity.
    Semm P; Demaine C; Vollrath L
    Exp Brain Res; 1981; 43(3-4):361-70. PubMed ID: 6114874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central GABAergic innervation of the mammalian pineal gland: a light and electron microscopic immunocytochemical investigation in rodent and nonrodent species.
    Sakai Y; Hira Y; Matsushima S
    J Comp Neurol; 2001 Jan; 430(1):72-84. PubMed ID: 11135246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological study of evoked electrical activity in the pineal gland.
    Pazo JH
    J Neural Transm; 1981; 52(1-2):137-48. PubMed ID: 7288434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of pineal multiunit response to flash after habenular lesion in quail.
    Herbuté S; Baylé JD
    Am J Physiol; 1977 Oct; 233(4):E293-7. PubMed ID: 910942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action spectra of the lateral eyes recorded from mammalian pineal glands.
    Thiele G; Meissl H
    Brain Res; 1987 Oct; 424(1):10-6. PubMed ID: 3690291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry.
    Guglielmotti V; Cristino L
    Brain Res Bull; 2006 May; 69(5):475-88. PubMed ID: 16647576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent projections from the lateral geniculate nucleus to the pineal complex of the Mongolian gerbil (Meriones unguiculatus).
    Mikkelsen JD; Cozzi B; Møller M
    Cell Tissue Res; 1991 Apr; 264(1):95-102. PubMed ID: 2054848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.