BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 724205)

  • 1. [Mechanism of genome inactivation in avian erythrocytes. IV. New data on the mechanisms of cytodifferentiation in erythropoiesis].
    Kul'minskaia AS; Brodskiĭ VIa; Gazarian KG
    Ontogenez; 1978; 9(6):601-8. PubMed ID: 724205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The mechanism of inactivation of the bird erythrocyte genome. III. Pathways of terminal differentiation of erythrocytes].
    Gazarian KG; Kul'minskaia AS
    Ontogenez; 1975; 6(1):31-8. PubMed ID: 1214984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Characteristics of the pathways of erythroid cell differentiation in birds in anemia].
    Korvin-Pavlovskaia EG; Kul'minskaia AS; Karalova EM; Magakian IuA; Gazarian KG
    Tsitologiia; 1983 Feb; 25(2):148-55. PubMed ID: 6679415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ["Extracyclic" DNA synthesis and the accumulation of total protein and hemoglobin in erythroid series cells in anemia in pigeons].
    Korvin-Pavlovskaia EG; Karalova EM; Kul'minskaia AS; Magakian IuA; Gazarian KG
    Tsitologiia; 1978 Sep; 20(9):1016-26. PubMed ID: 726074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [DNA synthesis and content and the accumulation of total protein and hemoglobin during the differentiation of primary erythroid cells in chickens].
    Karalova EM; Gazarian KG; Magakian IuA
    Tsitologiia; 1985 Jun; 27(6):663-9. PubMed ID: 4024259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pathways of terminal erythrocyte differentiation in birds. An analysis of the intermediate forms].
    Kul'minskaia AS; Gazarian KG
    Ontogenez; 1976; 7(6):590-7. PubMed ID: 1028009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the mechanism of genome inactivation in avian erythrocytes. 1. Characteristics of erythroid cell differentiating system.
    Gazaryan KG; Kul'minskaya AS; Anan'yants TG; Kir'yanov GI
    Sov J Dev Biol; 1971; 2(3):212-21. PubMed ID: 5154591
    [No Abstract]   [Full Text] [Related]  

  • 8. [Differentiation pathways of primary erythroid cells in chickens].
    Karalova EM; Korvin-Pavlovskaia EG; Gazarian KG; Magakian IuA
    Tsitologiia; 1985 Jun; 27(6):656-62. PubMed ID: 4024258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian primary erythropoiesis; accessory pathways of erythrocyte maturation in chick yolk sack.
    Gazaryan KG; Magakyan YuA ; Karalova EM
    Biomed Biochim Acta; 1987; 46(2-3):S136-40. PubMed ID: 3593293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on nucleoli of pigeon erythroid cells.
    Smetana K; Likovsky Z
    Cytobiologie; 1978 Jun; 17(1):146-58. PubMed ID: 689248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of the mechanism of erythrocyte genome inactivation in birds. II. RNA polymerase and matrix activity of the nuclei and chromatin].
    Gazarian KG; Anan'iants TG; Fedina AB; Andreeva NB
    Mol Biol; 1973; 7(1):73-83. PubMed ID: 4578596
    [No Abstract]   [Full Text] [Related]  

  • 12. [Accessory nuclei of the primary erythroid cells of chick embryos: the kinetics of their formation and the relationship to the synthesis of extra DNA].
    Magakian IuA; Karalova EM
    Tsitologiia; 1985 Oct; 27(10):1137-44. PubMed ID: 4071659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the nature of the differentiation of the erythroid stem cell in the bone marrow of mice as affected by the peritoneal cells of donors subjected to bloodletting].
    Babaeva AG; Belan EI
    Ontogenez; 1988; 19(2):125-31. PubMed ID: 3387040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Lymphocyte-macrophage regulation of reparative erythropoiesis].
    Babaeva AG; Belan EI
    Vestn Akad Med Nauk SSSR; 1990; (9):27-30. PubMed ID: 2264383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleated erythrocyte: a model of cell differentiation.
    Sinclair GD; Brasch K
    Rev Can Biol; 1975 Dec; 34(4):287-303. PubMed ID: 778941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes in the number and size of fibrillar centers in nucleolus inactivation during erythropoiesis].
    Zatsepina OV; Chelidze PV; Chentsov IuS
    Ontogenez; 1989; 20(1):40-6. PubMed ID: 2717136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on blood morphology in the European eel (Anguilla anguilla). I. Erythrocytes and their developmental stages].
    Kreutzmann HL
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1976; 103(2):226-35. PubMed ID: 61916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avian erythropoiesis: cellular and molecular aspects.
    Gazaryan KG
    Acta Biol Med Ger; 1977; 36(3-4):295-303. PubMed ID: 596045
    [No Abstract]   [Full Text] [Related]  

  • 19. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis.
    von Lindern M; Deiner EM; Dolznig H; Parren-Van Amelsvoort M; Hayman MJ; Mullner EW; Beug H
    Oncogene; 2001 Jun; 20(28):3651-64. PubMed ID: 11439328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proliferative activity of bone marrow and blood cells in rats with phenylhydrazine anemia].
    Kul'minskaia AS; Gazarian KG
    Ontogenez; 1980; 11(4):386-91. PubMed ID: 7443181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.