These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 7242147)
1. Two types of bipolar microelectrodes for intraretinal use. Alferdinck JW; Valeton JM; Van Norren D J Neurosci Methods; 1981 Apr; 3(4):397-404. PubMed ID: 7242147 [TBL] [Abstract][Full Text] [Related]
2. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording. Saburi M; Yamada M; Shigematsu Y IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448 [TBL] [Abstract][Full Text] [Related]
3. A simplified method for manufacturing glass-insulated metal microelectrodes. Sugiyama K; Dong WK; Chudler EH J Neurosci Methods; 1994 Jul; 53(1):73-80. PubMed ID: 7990516 [TBL] [Abstract][Full Text] [Related]
4. A simple method for the construction of a recording-injection microelectrode with glass-insulated microwire. Tsai ML; Chai CY; Yen CT J Neurosci Methods; 1997 Mar; 72(1):1-4. PubMed ID: 9128161 [TBL] [Abstract][Full Text] [Related]
5. Ion-selective microelectrodes suitable for recording rapid changes in extracellular ion concentration. Wen R; Oakley B J Neurosci Methods; 1990 Mar; 31(3):207-13. PubMed ID: 2329840 [TBL] [Abstract][Full Text] [Related]
6. A simple method for constructing shielded, low-capacitance glass microelectrodes. Kottra G; Frömter E Pflugers Arch; 1982 Nov; 395(2):156-8. PubMed ID: 7177782 [TBL] [Abstract][Full Text] [Related]
7. A new intraretinal recording system with multiple-barreled electrodes for pharmacological studies on cat retinal ganglion cells. Takao M; Wang1 Y; Miyoshi T; Fujita I; Fukuda Y J Neurosci Methods; 2000 Apr; 97(1):87-92. PubMed ID: 10771079 [TBL] [Abstract][Full Text] [Related]
8. Beveling of fine micropipette electrodes by a rapid precision method. Brown KT; Flaming DG Science; 1974 Aug; 185(4152):693-5. PubMed ID: 4841617 [TBL] [Abstract][Full Text] [Related]
9. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters. Briano RA J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960 [TBL] [Abstract][Full Text] [Related]
10. Scanning electrochemical microscopy (SECM) of nanolitre droplets using an integrated working/reference electrode assembly. Turcu F; Schulte A; Schuhmann W Anal Bioanal Chem; 2004 Nov; 380(5-6):736-41. PubMed ID: 15517205 [TBL] [Abstract][Full Text] [Related]
11. Intraretinal recordings of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Valeton JM; van Norren D Vision Res; 1982; 22(3):393-9. PubMed ID: 7090193 [TBL] [Abstract][Full Text] [Related]
12. Compensation for cross-talk and high frequency attenuation of bipolar microelectrodes. Valeton JM; Alferdinck JW; Varkevisser J J Neurosci Methods; 1981 Apr; 3(4):405-20. PubMed ID: 7242148 [TBL] [Abstract][Full Text] [Related]
13. A technique for microiontophoretic study of single neurones in the behaving monkey. Perrett DI; Rolls ET J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775 [TBL] [Abstract][Full Text] [Related]
14. Glass pipette-carbon fiber microelectrodes for evoked potential recordings. Moraes MF; Garcia-Cairasco N Braz J Med Biol Res; 1997 Nov; 30(11):1319-24. PubMed ID: 9532241 [TBL] [Abstract][Full Text] [Related]
15. Marking the tip location of PO2 microelectrodes or glass micropipettes. Nair P; Spande JI; Whalen WJ J Appl Physiol Respir Environ Exerc Physiol; 1980 Nov; 49(5):916-8. PubMed ID: 7429916 [TBL] [Abstract][Full Text] [Related]
16. Dry beveling micropipettes using a computer hard drive. Canfield JG J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203 [TBL] [Abstract][Full Text] [Related]
17. A modified coaxial compound micropipette for extracellular iontophoresis and intracellular recording: fabrication, performance and theory. Remmers JE; Schultz SA; Wallace J; Takeda R; Haji A Jpn J Pharmacol; 1997 Oct; 75(2):161-9. PubMed ID: 9414031 [TBL] [Abstract][Full Text] [Related]
18. A glass-insulated "Elgiloy" microelectrode for recording unit activity in chronic monkey experiments. Suzuki H; Azuma M Electroencephalogr Clin Neurophysiol; 1976 Jul; 41(1):93-5. PubMed ID: 58772 [TBL] [Abstract][Full Text] [Related]
19. A simple and comprehensive method for the construction, repair and recycling of single and double tungsten microelectrodes. Li CY; Xu XZ; Tigwell D J Neurosci Methods; 1995 Apr; 57(2):217-20. PubMed ID: 7609585 [TBL] [Abstract][Full Text] [Related]
20. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]