These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7242147)

  • 21. Studies on the origin of the tip potential of glass microelectrode.
    Okada Y; Inouye A
    Biophys Struct Mech; 1976 Apr; 2(1):31-42. PubMed ID: 963226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple method for beveling micropipettes for intracellular recording and current injection.
    Tauchi M; Kikuchi R
    Pflugers Arch; 1977 Mar; 368(1-2):153-5. PubMed ID: 558588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sputtered gold microelectrode in combination with a multibarrelled micropipette: a low impedance extracellular recording electrode with the facility of iontophoresis.
    Goodchild CS; Crane RA; Bennett JA; Ford TW; Kidd C; McWilliam PN
    Electroencephalogr Clin Neurophysiol; 1987 Jul; 67(1):91-4. PubMed ID: 2439286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Needle-type ultra micro silver/silver chloride reference electrode for use in micro-electrochemistry.
    Kitade T; Kitamura K; Takegami S; Miyata Y; Nagatomo M; Sakaguchi T; Furukawa M
    Anal Sci; 2005 Aug; 21(8):907-12. PubMed ID: 16122159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micropipette puller design: form of the heating filament and effects of filament width on tip length and diameter.
    Flaming DG; Brown KT
    J Neurosci Methods; 1982 Jul; 6(1-2):91-102. PubMed ID: 7121062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design for a slender shaft glass micropipette.
    Perachio AA; Correia MJ
    J Neurosci Methods; 1983 Dec; 9(4):287-93. PubMed ID: 6668954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes.
    Hermans A; Wightman RM
    Langmuir; 2006 Dec; 22(25):10348-53. PubMed ID: 17129002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of electroretinogram during systemic hypercapnia with intraretinal K(+)-microelectrodes in cats.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3957-61. PubMed ID: 7928195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of electrolyte-filled glass microelectrodes: an experimental study.
    Fåhraeus C; Borglid K; Grampp W
    J Neurosci Methods; 1997 Dec; 78(1-2):15-28. PubMed ID: 9496998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of retinal responses evoked by transscleral electrical stimulation detected by intrinsic signal imaging in macaque monkeys.
    Inomata K; Tsunoda K; Hanazono G; Kazato Y; Shinoda K; Yuzawa M; Tanifuji M; Miyake Y
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2193-200. PubMed ID: 18436852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Center surround receptive field structure of cone bipolar cells in primate retina.
    Dacey D; Packer OS; Diller L; Brainard D; Peterson B; Lee B
    Vision Res; 2000; 40(14):1801-11. PubMed ID: 10837827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microelectrodes.
    Hebert NC; Lavallée M; Schanne O
    Science; 1968 Apr; 160(3825):333-4. PubMed ID: 5641270
    [No Abstract]   [Full Text] [Related]  

  • 34. Development of a new geometrical form of micropipette: electrical characteristics and an application as a potassium ion selective electrode.
    Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1992 Jan; 39(1):43-8. PubMed ID: 1572680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new MRI approach for accurately implanting microelectrodes into deep brain structures of the rhesus monkey (Macaca mulatta).
    Jing W; Wenchao W; Lin L; Li L; Guimei W; Heng T; Huihui J; Jianhong W; Yuanye M; Xintian H
    J Neurosci Methods; 2010 Nov; 193(2):203-9. PubMed ID: 20692292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of electrolyte-filled glass microelectrodes: a model analysis.
    Fåhraeus C; Grampp W
    J Neurosci Methods; 1997 Dec; 78(1-2):29-45. PubMed ID: 9496999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of low-melting-point alloy microelectrode and monolithic spray tip for integration of glass chip with electrospray ionization mass spectrometry.
    Zhu Y; Pan JZ; Su Y; He QH; Fang Q
    Talanta; 2010 May; 81(3):1069-75. PubMed ID: 20298895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings.
    Li PH; Gauthier JL; Schiff M; Sher A; Ahn D; Field GD; Greschner M; Callaway EM; Litke AM; Chichilnisky EJ
    J Neurosci; 2015 Mar; 35(11):4663-75. PubMed ID: 25788683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Optimization of a recording procedure of a multifocal electroretinogram].
    Shamshinova AM; Seidova SF
    Vestn Oftalmol; 2009; 125(1):13-7. PubMed ID: 19284094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution from proximal retina to intraretinal pattern ERG: the M-wave.
    Sieving PA; Steinberg RH
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1642-7. PubMed ID: 4055298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.