These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 7243943)

  • 1. Variability of physiological properties of rat skeletal muscles at different gravity levels.
    Oganov VS; Potapov AN; Skuratova SA; Shirvinskaya MA
    Physiologist; 1980 Dec; 23(Suppl 6):S71-5. PubMed ID: 7243943
    [No Abstract]   [Full Text] [Related]  

  • 2. [Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].
    Nosova EA; Veresotskaia NA; Kolchina EV; Kurkina LM; Belitskaia RA
    Kosm Biol Aviakosm Med; 1981; 15(5):71-5. PubMed ID: 7289569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of a flight on the Cosmos-936 biosatellite on the contractile properties of rat muscle fibers].
    Oganov VS; Skuratova SA; Shirvinskaia MA
    Kosm Biol Aviakosm Med; 1981; 15(4):58-61. PubMed ID: 7265875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of short- and long-term spaceflight on the contractile properties of rat skeletal muscles with different functions.
    Rapcsák M; Oganov VS; Szilágyi T; Szoor A
    Physiologist; 1993 Feb; 36(1 Suppl):S143-6. PubMed ID: 11538513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents.
    Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model.
    Roy RR; Baldwin KM; Edgerton VR
    Exerc Sport Sci Rev; 1996; 24():399-425. PubMed ID: 8744257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphometric analysis of rat muscle fibers following space flight and hypogravity.
    Chui LA; Castleman KR
    Physiologist; 1980 Dec; 23(Suppl 6):S76-8. PubMed ID: 7243944
    [No Abstract]   [Full Text] [Related]  

  • 8. [Cathepsin activity of skeletal muscle and myocardial myofibrils after exposure to weightlessness and G force].
    Oganesian SS; Eloian MA
    Kosm Biol Aviakosm Med; 1981; 15(6):38-42. PubMed ID: 7311450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of weightlessness and artificial gravitation on morphological manifestations of the adrenal cortex reaction in rats after space flight on board the biosatellite "Cosmos-936"].
    Savina EA; Alekseev EI; Kuz'mina ZF
    Arkh Anat Gistol Embriol; 1980 Oct; 79(10):25-30. PubMed ID: 7447725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.
    Baldwin KM; Caiozzo VJ; Haddad F; Baker MJ; Herrick RE
    J Gravit Physiol; 1994 May; 1(1):P8-11. PubMed ID: 11538774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A morphological study of skeletal muscles of rats flown aboard the space laboratory SLS-2].
    Il'ina-Kakueva EI; Babakova LL; Demorzhi MS; Pozdniakov OM
    Aviakosm Ekolog Med; 1995; 29(6):12-8. PubMed ID: 8664880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy.
    Sekulić SR; Lukac DD; Naumović NM
    Med Hypotheses; 2005; 64(2):221-8. PubMed ID: 15607544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensorimotor and perceptual function of muscle proprioception in microgravity.
    Roll JP; Popov K; Gurfinkel V; Lipshits M; André-Deshays C; Gilhodes JC; Quoniam C
    J Vestib Res; 1993; 3(3):259-73. PubMed ID: 8275261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Importance of artificial gravity as a means of preventing atrophic skeletal changes].
    Stupakov GP
    Kosm Biol Aviakosm Med; 1981; 15(4):62-3. PubMed ID: 7265876
    [No Abstract]   [Full Text] [Related]  

  • 15. On the biological role of gravity.
    Gazenko OG; Gurjian AA
    Life Sci Space Res; 1965; 3():241-57. PubMed ID: 12035804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomedical results of the Skylab Program.
    Michel EL; Johnston RS; Dietlein LF
    Life Sci Space Res; 1976; 14():3-18. PubMed ID: 11977284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanisms of changes in skeletal muscles in the weightless environment.
    Oganov VS; Potapov AN
    Life Sci Space Res; 1976; 14():137-43. PubMed ID: 11977271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles.
    Stevens L; Picquet F; Catinot MP; Mounier Y
    J Gravit Physiol; 1996 Sep; 3(2):54-7. PubMed ID: 11540282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary role of gravity.
    Dubinin NP; Vaulina EN
    Life Sci Space Res; 1976; 14():47-55. PubMed ID: 12678101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of space flight factors and artificial gravity on deoxyribonucleoprotein in lymphoid organs of rats.
    Misúrová E; Tigranyan RA; Praslicka M; Kropácová K; Szabová T
    Physiologist; 1980 Dec; 23(Suppl 6):S133-4. PubMed ID: 7243918
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.