BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7247392)

  • 1. The effect of temperature on the growth and lipid composition of the extremely halophilic coccus, Sarcina marina.
    Hunter MI; Olawoye TL; Saynor DA
    Antonie Van Leeuwenhoek; 1981 Mar; 47(1):25-40. PubMed ID: 7247392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polar lipids of non-alkaliphilic Halococci.
    Moldoveanu N; Kates M; Montero CG; Ventosa A
    Biochim Biophys Acta; 1990 Sep; 1046(2):127-35. PubMed ID: 2223853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains.
    Upasani VN; Desai SG; Moldoveanu N; Kates M
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1959-66. PubMed ID: 7921247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: a novel bis-sulfated glycolipid.
    Matsubara T; Iida-Tanaka N; Kamekura M; Moldoveanu N; Ishizuka I; Onishi H; Hayashi A; Kates M
    Biochim Biophys Acta; 1994 Aug; 1214(1):97-108. PubMed ID: 8068733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in the lipid and fatty acid composition in purified membrane fractions from Sarcina aurantiaca in relation to growth phase.
    Thirkell D; Gray EM
    Antonie Van Leeuwenhoek; 1974; 40(1):71-8. PubMed ID: 4545203
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether.
    Ferrante G; Ekiel I; Sprott GD
    J Biol Chem; 1986 Dec; 261(36):17062-6. PubMed ID: 3782154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt tolerance of archaeal extremely halophilic lipid membranes.
    Tenchov B; Vescio EM; Sprott GD; Zeidel ML; Mathai JC
    J Biol Chem; 2006 Apr; 281(15):10016-23. PubMed ID: 16484230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halorussus salinus sp. nov., isolated from a marine solar saltern.
    Xu JQ; Xu WM; Li Y; Zhou Y; Lü ZZ; Hou J; Zhu L; Cui HL
    Arch Microbiol; 2016 Dec; 198(10):957-961. PubMed ID: 27290647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids of Thermoplasma acidophilum.
    Langworthy TA; Smith PF; Mayberry WR
    J Bacteriol; 1972 Dec; 112(3):1193-200. PubMed ID: 4344918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.
    Langworthy TA; Mayberry WR; Smith PF
    J Bacteriol; 1974 Jul; 119(1):106-16. PubMed ID: 4407015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern.
    Cui HL; Mou YZ; Yang X; Zhou YG; Liu HC; Zhou PJ
    Syst Appl Microbiol; 2012 Feb; 35(1):30-4. PubMed ID: 21889861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid composition of Bacillus cereus during growth and sporulation.
    Lang DR; Lundgren DG
    J Bacteriol; 1970 Feb; 101(2):483-9. PubMed ID: 4984075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately halophilic eubacterium.
    Sutton GC; Russell NJ; Quinn PJ
    Biochim Biophys Acta; 1991 Jan; 1061(2):235-46. PubMed ID: 1998695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of variations in growth temperature, fatty acid composition and cholesterol content on the lipid polar head-group composition of Acholeplasma laidlawii B membranes.
    Bhakoo M; McElhaney RN
    Biochim Biophys Acta; 1988 Nov; 945(2):307-14. PubMed ID: 3191126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi.
    Lobasso S; Lopalco P; Mascolo G; Corcelli A
    Archaea; 2008 Dec; 2(3):177-83. PubMed ID: 19054744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene.
    Lanyi JK; Plachy WZ; Kates M
    Biochemistry; 1974 Nov; 13(24):4914-20. PubMed ID: 4373043
    [No Abstract]   [Full Text] [Related]  

  • 17. The lipid composition of a halotolerant species of Staphylococcus epidermidis.
    Komaratat P; Kates M
    Biochim Biophys Acta; 1975 Sep; 398(3):464-84. PubMed ID: 1174526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of halophilic bacteria, Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance.
    Kates M
    Experientia; 1993 Dec; 49(12):1027-36. PubMed ID: 8270029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of squalene, di- and tetrahydrosqualenes, and vitamin MK8 in an extremely halophilic bacterium, Halobacterium cutirubrun.
    Tornabene TG; Kates M; Gelpi E; Oro J
    J Lipid Res; 1969 May; 10(3):294-303. PubMed ID: 5785002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of growth temperature on lipid composition of Streptococcus faecium.
    Ordóñez JA; De La Hoz L; Azcona JI; Sanz B
    Can J Microbiol; 1985 Apr; 31(4):361-6. PubMed ID: 4005717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.