These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 724742)

  • 1. Effects of pre- and post-trial caffeine administrations upon "step-down" passive avoidance behavior in rats submitted or not to electroconvulsive shock.
    Dall'Olio R; Gandolfi O; Montanaro N
    Pharmacol Res Commun; 1978 Oct; 10(9):851-8. PubMed ID: 724742
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of piracetam and of standardized ginseng extract on the electroconvulsive shock-induced memory disturbances in "step-down" passive avoidance.
    Lasarova MB; Mosharrof AH; Petkov VD; Markovska VL; Petkov VV
    Acta Physiol Pharmacol Bulg; 1987; 13(2):11-7. PubMed ID: 3673597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strychnine-induced passive avoidance facilitation after electroconvulsive shock or undertraining: a retrieval effect.
    Sara SJ; Remacle JF
    Behav Biol; 1977 Apr; 19(4):465-75. PubMed ID: 860984
    [No Abstract]   [Full Text] [Related]  

  • 4. Pre-test administration of beta-endorphin, or of electroconvulsive shock reverses the memory disruptive effect of posttraining electroconvulsive shock.
    Netto CA; Oliveira CB; Gianlupi A; Quillfeldt J; Izquierdo I
    Peptides; 1987; 8(4):605-8. PubMed ID: 2957654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a spirocyclic cyclodipeptide derivate of MIF on passive avoidance behavior and amnesia in rats.
    Krejcí I; Dlabac A; Vanzura J; Kosnar J
    Act Nerv Super (Praha); 1986 Dec; 28(4):241-6. PubMed ID: 2881422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired acquisition and retention of a passive avoidance response after chronic ingestion of taurine.
    Sanberg PR; Fibiger HC
    Psychopharmacology (Berl); 1979 Mar; 62(1):97-9. PubMed ID: 108754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of meclofenoxate and Extr. Rhodiolae roseae L. on electroconvulsive shock-impaired learning and memory in rats.
    Lazarova MB; Petkov VD; Markovska VL; Petkov VV; Mosharrof A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):547-52. PubMed ID: 3095599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive avoidance behavior in rats after electroconvulsive shock: facilitative effect of response retardation.
    Sara SJ; David-Remacle M; Lefevre D
    J Comp Physiol Psychol; 1975 Jul; 89(5):489-97. PubMed ID: 1194454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of caffeine in animal models of learning and memory.
    Angelucci ME; Vital MA; Cesário C; Zadusky CR; Rosalen PL; Da Cunha C
    Eur J Pharmacol; 1999 Jun; 373(2-3):135-40. PubMed ID: 10414431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of methamphetamine and shock duration during inescapable shock exposure on subsequent active and passive avoidance.
    Anisman H; Waller TG
    J Comp Physiol Psychol; 1971 Oct; 77(1):143-51. PubMed ID: 5120678
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents.
    Cumin R; Bandle EF; Gamzu E; Haefely WE
    Psychopharmacology (Berl); 1982; 78(2):104-11. PubMed ID: 6817363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State dependent and/or direct memory retrieval by morphine in mice.
    Nishimura M; Shiigi Y; Kaneto H
    Psychopharmacology (Berl); 1990; 100(1):27-30. PubMed ID: 2296624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of caffeine and nicotine on avoidance learning in mice: lack of interaction.
    Sansone M; Battaglia M; Castellano C
    J Pharm Pharmacol; 1994 Sep; 46(9):765-7. PubMed ID: 7837048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mammillary body, a potential site of action of neurotensin in passive avoidance behavior in rats.
    Shibata K; Furukawa T
    Brain Res; 1988 Mar; 443(1-2):117-24. PubMed ID: 3129133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of scopolamine on the amnesia induced by electroconvulsive shock.
    Albert DJ; mah CJ; Bose WB
    Pharmacol Biochem Behav; 1974 May; 2(3):443-6. PubMed ID: 4858182
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of N-(2,6-dimethylphenyl)-2-(2-oxo-1-pyrrolidinyl)acetamide (DM-9384) on learning and memory in rats.
    Sakurai T; Ojima H; Yamasaki T; Kojima H; Akashi A
    Jpn J Pharmacol; 1989 May; 50(1):47-53. PubMed ID: 2724699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of some K(+) channel blockers on scopolamine- or electroconvulsive shock-induced amnesia in mice.
    Inan SY; Aksu F; Baysal F
    Eur J Pharmacol; 2000 Oct; 407(1-2):159-64. PubMed ID: 11050303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of beta-(Tyr9)melanotropin-(9-18) on active avoidance behavior, electroconvulsive shock-induced amnesia and T-discrimination learning of rats.
    Telegdy G; Vécsei L; Bollók I; Schally AV
    Peptides; 1986; 7(1):11-3. PubMed ID: 3714528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats.
    Hsieh MT; Wu CR; Chen CF
    J Ethnopharmacol; 1997 Mar; 56(1):45-54. PubMed ID: 9147253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from electroconvulsive shock-induced amnesia by exposure to the training environment: pharmacological enhancement by piracetam.
    Sara SJ; David-Remacle M
    Psychopharmacologia; 1974 Mar; 36(1):59-66. PubMed ID: 4838504
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.