These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7248255)
1. Hexagonal phases in phospholipids with saturated chains: phosphatidylethanolamines and phosphatidic acids. Harlos K; Eibl H Biochemistry; 1981 May; 20(10):2888-92. PubMed ID: 7248255 [TBL] [Abstract][Full Text] [Related]
2. A calorimetric study of the thermotropic behaviour of 1,2-dipentadecylmethylidene phospholipids. Blume A; Eibl H Biochim Biophys Acta; 1981 Jan; 640(2):609-18. PubMed ID: 7213906 [TBL] [Abstract][Full Text] [Related]
3. Effect of fatty acyl chain length and structure on the lamellar gel to liquid-crystalline and lamellar to reversed hexagonal phase transitions of aqueous phosphatidylethanolamine dispersions. Lewis RN; Mannock DA; McElhaney RN; Turner DC; Gruner SM Biochemistry; 1989 Jan; 28(2):541-8. PubMed ID: 2713331 [TBL] [Abstract][Full Text] [Related]
4. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Sot J; Aranda FJ; Collado MI; Goñi FM; Alonso A Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626 [TBL] [Abstract][Full Text] [Related]
5. Gel-to-inverted hexagonal (L beta-HII) phase transitions in phosphatidylethanolamines and fatty acid-phosphatidylcholine mixtures, demonstrated by 31P-NMR spectroscopy and x-ray diffraction. Marsh D; Seddon JM Biochim Biophys Acta; 1982 Aug; 690(1):117-23. PubMed ID: 6897003 [TBL] [Abstract][Full Text] [Related]
6. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Cullis PR; De Kruyff B Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909 [TBL] [Abstract][Full Text] [Related]
7. Differential scanning calorimetry of chain-melting phase transitions of N-acylphosphatidylethanolamines. Swamy MJ; Marsh D; Ramakrishnan M Biophys J; 1997 Nov; 73(5):2556-64. PubMed ID: 9370449 [TBL] [Abstract][Full Text] [Related]
8. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Seddon JM; Cevc G; Kaye RD; Marsh D Biochemistry; 1984 Jun; 23(12):2634-44. PubMed ID: 6466602 [TBL] [Abstract][Full Text] [Related]
9. Differential scanning calorimetry of thermotropic phase transitions in vitaminylated lipids: aqueous dispersions of N-biotinyl phosphatidylethanolamines. Swamy MJ; Angerstein B; Marsh D Biophys J; 1994 Jan; 66(1):31-9. PubMed ID: 8130345 [TBL] [Abstract][Full Text] [Related]
10. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402 [TBL] [Abstract][Full Text] [Related]
11. Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: a real-time X-ray diffraction study using synchrotron radiation. Caffrey M Biochemistry; 1985 Aug; 24(18):4826-44. PubMed ID: 4074661 [TBL] [Abstract][Full Text] [Related]
12. Role of the position of unsaturation on the phase behavior and intrinsic curvature of phosphatidylethanolamines. Epand RM; Fuller N; Rand RP Biophys J; 1996 Oct; 71(4):1806-10. PubMed ID: 8889157 [TBL] [Abstract][Full Text] [Related]
13. Structural properties of a Ca2+-phosphatidic acid complex: small angle X-ray scattering and calorimetric results. Liao MJ; Prestegard JH Biochim Biophys Acta; 1981 Jul; 645(1):149-56. PubMed ID: 7260081 [TBL] [Abstract][Full Text] [Related]
14. Structure and thermotropic properties of phosphatidylethanolamine and its N-methyl derivatives. Mulukutla S; Shipley GG Biochemistry; 1984 May; 23(11):2514-9. PubMed ID: 6477882 [TBL] [Abstract][Full Text] [Related]
15. Influence of calcium on phosphatidylethanolamine. An investigation of the structure at high pH. Harlos K; Eibl H Biochim Biophys Acta; 1980 Sep; 601(1):113-22. PubMed ID: 7407158 [TBL] [Abstract][Full Text] [Related]
16. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids. Tenchov B; Koynova R; Rapp G Biophys J; 2001 Apr; 80(4):1873-90. PubMed ID: 11259300 [TBL] [Abstract][Full Text] [Related]
17. Chain-melting transition temperatures of phospholipids with acylated or alkylated headgroups (N-acyl phosphatidylethanolamines and O-alkyl phosphatidic acids), or with alpha-branched chains. Marsh D Biochim Biophys Acta; 1998 Nov; 1414(1-2):249-54. PubMed ID: 9804967 [TBL] [Abstract][Full Text] [Related]
18. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Epand RM Biochemistry; 1985 Dec; 24(25):7092-5. PubMed ID: 4084564 [TBL] [Abstract][Full Text] [Related]
19. Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Lewis RN; McElhaney RN Biophys J; 2000 Sep; 79(3):1455-64. PubMed ID: 10969007 [TBL] [Abstract][Full Text] [Related]
20. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Cullis PR; de Kruijff B Biochim Biophys Acta; 1978 Oct; 513(1):31-42. PubMed ID: 31173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]