These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7248259)

  • 1. Proximity relationships within the Fc segment of rabbit immunoglobulin G analyzed by resonance energy transfer.
    Luedtke R; Owen CS; Vanderkooi JM; Karush F
    Biochemistry; 1981 May; 20(10):2927-36. PubMed ID: 7248259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximity of antibody binding sites studied by fluorescence energy transfer.
    Luedtke R; Owen CS; Karush F
    Biochemistry; 1980 Mar; 19(6):1182-92. PubMed ID: 7189409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements of immunoglobulin G for binding to the Fc gamma receptors of the human tumor cell lines U937, HL-60, ML-1, and K562.
    McCool D; Birshtein BK; Painter RH
    J Immunol; 1985 Sep; 135(3):1975-80. PubMed ID: 3860563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding of lanthanides to non-immune rabbit immunoglobulin G and its fragments.
    Dower SK; Dwek RA; McLaughlin AC; Mole LE; Press EM; Sunderland CA
    Biochem J; 1975 Jul; 149(1):73-82. PubMed ID: 242326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of immunoglobulin G and its proteolytic fragments by the monomolecular layer method].
    Lavrent'ev VV; Chasovnikova LV; Tarkhanova IO; Fishevskaia EV; Kul'berg AIa
    Biofizika; 1980; 25(3):432-8. PubMed ID: 7397259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation.
    Hanson DC; Yguerabide J; Schumaker VN
    Biochemistry; 1981 Nov; 20(24):6842-52. PubMed ID: 7317358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic conformations compared for IgE and IgG1 in solution and bound to receptors.
    Zheng Y; Shopes B; Holowka D; Baird B
    Biochemistry; 1992 Aug; 31(33):7446-56. PubMed ID: 1387320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer between the active sites of creatine kinase from rabbit brain.
    Grossman SH
    Biochim Biophys Acta; 1990 Sep; 1040(2):276-80. PubMed ID: 2400776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and function of immunoglobulin domains. II. The importance of interchain disulfide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement.
    Isenman DE; Dorrington KJ; Painter RH
    J Immunol; 1975 Jun; 114(6):1726-9. PubMed ID: 1127227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small domain (6.5 kDa) of bacterial protein G inhibits C3 covalent binding to the Fc region of IgG immune complexes.
    Muñoz E; Vidarte L; Pastor C; Casado M; Vivanco F
    Eur J Immunol; 1998 Aug; 28(8):2591-7. PubMed ID: 9710236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human myeloma IgG half-molecules. Structural and antigenic analyses,
    Spiegelberg HL; Heath VC; Lang JE
    Biochemistry; 1975 May; 14(10):2157-63. PubMed ID: 50083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum.
    Bigelow DJ; Inesi G
    Biochemistry; 1991 Feb; 30(8):2113-25. PubMed ID: 1825607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-transfer measurements on a double fluorescent labeled ribonuclease A.
    Jullien M; Garel JR
    Biochemistry; 1983 Aug; 22(16):3829-36. PubMed ID: 6412748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologic significance of disulfide bonds in human IgE molecules.
    Takatsu K; Ishizaka T; Ishizaka K
    J Immunol; 1975 Jun; 114(6):1838-45. PubMed ID: 47881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational dynamics of immunoglobulin G antibodies anchored in protein A soluble complexes.
    Hanson DC; Yguerabide J; Schumaker VN
    Mol Immunol; 1985 Mar; 22(3):237-44. PubMed ID: 4000128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes.
    Buckler DR; Haas E; Scheraga HA
    Biochemistry; 1995 Dec; 34(49):15965-78. PubMed ID: 8519753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular distribution and degradation of immunoglobulin G and immunoglobulin G fragments injected into HeLa cells.
    McGarry T; Hough R; Rogers S; Rechsteiner M
    J Cell Biol; 1983 Feb; 96(2):338-46. PubMed ID: 6403551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.