These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 7248300)
1. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal. Chollet R Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of ribulosebisphosphate carboxylase by modification of arginyl residues with phenylglyoxal. Schloss JV; Norton IL; Stringer CD; Hartman FC Biochemistry; 1978 Dec; 17(26):5626-31. PubMed ID: 728421 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of tobacco ribulosebisphosphate carboxylase by 2,3-butanedione. Chollet R Biochem Biophys Res Commun; 1978 Aug; 83(4):1267-74. PubMed ID: 29630 [No Abstract] [Full Text] [Related]
4. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal. Peters RG; Jones WC; Cromartie TH Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621 [TBL] [Abstract][Full Text] [Related]
5. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Malebrán LP; Cardemil E Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926 [TBL] [Abstract][Full Text] [Related]
6. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs. Vernon CM; Hsu RY Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923 [TBL] [Abstract][Full Text] [Related]
7. Cyanate modification of essential lysyl residues in the catalytic subunit of tobacco ribulosebisphosphate carboxylase. Chollet R; Anderson LL Biochim Biophys Acta; 1978 Aug; 525(2):455-67. PubMed ID: 687641 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase. Bohren KM; von Wartburg JP; Wermuth B Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957 [TBL] [Abstract][Full Text] [Related]
9. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue. Akeroyd R; Lange LG; Westerman J; Wirtz KW Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of arginine residues in the lactose repressor. Whitson PA; Matthews KS Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382 [TBL] [Abstract][Full Text] [Related]
11. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents. Jackson DG; Hersh LB J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576 [TBL] [Abstract][Full Text] [Related]
12. Arginyl and histidyl groups are essential for organic anion exchange in renal brush-border membrane vesicles. Sokol PP; Holohan PD; Ross CR J Biol Chem; 1988 May; 263(15):7118-23. PubMed ID: 3366770 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues. Franks DJ; Tunnicliff G; Ngo TT Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate. Hemmilä IA; Mäntsälä PI Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736 [TBL] [Abstract][Full Text] [Related]
15. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs. Pullan LM; Igarashi P; Noltmann EA Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver. Ramakrishna S; Benjamin WB Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981 [TBL] [Abstract][Full Text] [Related]
17. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents. Yoshida I; Koyama T; Ogura K Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196 [TBL] [Abstract][Full Text] [Related]
18. Arginine modifiers as energy transfer inhibitors in photophosphorylation. Schmid R; Jagendorf AT; Hulkower S Biochim Biophys Acta; 1977 Oct; 462(1):177-86. PubMed ID: 143962 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue. Epperly BR; Dekker EE J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195 [TBL] [Abstract][Full Text] [Related]
20. A critical arginine in the large subunit of ribulose bisphosphate carboxylase/oxygenase identified by site-directed mutagenesis. Haining RL; McFadden BA J Biol Chem; 1990 Apr; 265(10):5434-9. PubMed ID: 2108139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]